文章主题:AI医疗, D轮融资, 中投公司, AI医疗投资

666AI工具大全,助力做AI时代先行者!

AI医疗:搭建未来新医疗系统的基础设施

🚀【AI医疗巨头】北京A.I医疗公司宣布已完成D轮融资10亿人民币!🌟于7月4日这激动人心的一刻,这家总部位于中国首都的创新医疗先锋正式宣告上半年D轮融资大获成功,金额高达10亿人民币,引领行业迈向崭新的独角兽地位。👀这笔巨额投资不仅彰显了公司在医疗大数据与人工智能领域的实力,也让全球瞩目的主权财富基金——中投公司成为此轮投资的重要推手,其身影在投资名单上熠熠生辉。💼这一消息无疑为AI医疗领域注入强心剂,投资者和行业人士都将目光聚焦在这家独角兽企业身上,期待它未来带来更多突破性进展。🔥记得关注我们,获取更多医疗科技动态!🌐

🌟近几年,AI医疗领域的投资热度持续高涨,💰资本巨头们纷纷押注这一前沿科技。他们对AI医疗的未来发展持有何等期待?🔍技术的进步是否真的能颠覆传统的医疗服务模式?.AI医疗能否成为医疗界的革新者,彻底取代医生的角色?🤔医院层面对此有何考量和见解?这些关键问题引发了广泛讨论。尽管AI在诊断、辅助决策等方面展现出强大的潜力,但医疗行业的复杂性和人性化需求不容忽视。 médico替换AI?有待实践检验的路还很长。👩‍⚕️无论如何,AI医疗的发展无疑为医疗行业带来了革命性的变革,优化了医疗服务流程,提高了效率。但它能否成为主流,还需时间来给出答案。🚀

国内A I医疗融资多在A轮

🌟长岭资本,AI医疗领域的领航者🌟近年来,我们有幸携手NEA恩颐资本,深度涉足中国AI医疗市场。据统计,2016年,这个领域在中国迎来了爆发式增长的元年,共有27家创新企业崭露头角,其中不乏融资金额破千万人民币或美元的大手笔案例,总计超过20亿人民币的巨额投资流入。🚀这不仅是技术革新与医疗实践的交汇,也是中国医疗健康版图中浓墨重彩的一笔。

🌟海外投资热浪在2014年就已经席卷全球,特别是在美国、英国和印度这三个医疗科技巨头引领下,展现出强劲的增长势头。其中,Flatiron Health凭借其肿瘤大数据的独特优势,在2014年的首轮融资中就吸引了1.3亿美元的巨额资金,随后在2016年再创辉煌,获得1.75亿美元的加持。直至2018年,这家公司以惊人的21亿美元被罗氏制药强势收购,成为该领域瞩目的里程碑。🚀

🌟中国的AI医疗领域正在迎来一场创新风暴,随着投资热潮的逐渐升温,国内企业在这一领域的商业探索才刚刚起步。据统计,已有超过80家国内领先的人工智能医疗企业崭露头角,其中约60%的企业已公开展示了他们的融资成绩单,多数处于早期的A轮或天使阶段,这标志着一个充满活力和潜力的新起点。🚀

🌟【AI医疗寒冬】全球关注,理性审视!🔍面对IBMWatson的裁员风暴,2018年5月的冷风吹向医疗人工智能(AI医疗)这片看似繁荣的领域。💥 然而,这并非偶然,而是行业调整的信号。曾经的领头羊IBM在同年两大医疗领域的掷金举措——26亿收购Truven和10亿美元并购Merge Healthcare——如今却成了转折点。💔裁员事件不仅引发了业界对AI医疗泡沫的质疑,也让投资者和创业者重新审视其可持续性和盈利能力。🔍 人工智能在医疗健康中的应用,虽潜力巨大,但现实挑战不容忽视:技术成熟度、数据隐私保护以及法规合规性等都是需要直面的问题。🔥IBM Watson的挫折提醒我们,任何行业的发展都需要冷静分析与稳健前行。🚀 在这个变革的时代,寻找真正解决医疗问题的技术,而非盲目跟风,才是明智之选。🌟

布局医学影像最多

作为长岭资本管理合伙人,蒋晓东在分析了中国83家人工智能初创公司在医疗领域的布局后,认为国内外AI医疗公司有着显著差异。

上述83家人工智能初创公司中,布局医学影像最多,占到38家;布局虚拟助手的其次,占15家;布局病历文献数据及分析的紧随其后,占14家;另外,布局健康管理、疾病筛查及预测、智能化器械分别有7家、4家和3家,而布局医院管理和药物研发的均只有1家。

由此不难看出,从细分领域集中度来看,中国的人工智能在医疗中的应用主要集中于基础医疗信息体系,例如医疗影像信息、病历信息等。

而与此形成对比的是,境外人工智能+医疗企业的细分领域布局分布较为均匀,但是会偏向于药物研发、健康管理等更深层次的应用。

AI+诊断有望大规模铺开

据南都记者了解,在广州市内的医院中,中山大学中山眼科中心、中山大学肿瘤防治中心及广州市妇女儿童医疗中心均在“AI+诊断”方面有相应的落地项目。

以全球最早开展眼科AI诊断的中山大学中山眼科中心为例,该院人工智能负责人林浩添教授接受南都记者采访时表示,“AI医生”(即眼科人工智能机器人CC-Cruiser)主要用于筛查常见眼病,目前已经在医院门诊使用一年多。因医疗特殊性及技术限制等原因,目前AI门诊模式 主 要 是“AI诊断+临床医生复核”。林浩添还表示,该AI系统已经在越秀区白云街、珠光街和东山街的基层社区卫生服务中心放置了终端,通过AI+远程诊断实现眼病筛查。

“从前期的比较数据来看,医生平常从接诊一名患者到作出诊断,耗时约合10分钟左右。使用A I之后,从接诊到医生复核A I检查结果平均耗时压缩到两分钟以内。”林浩添告诉南都记者,就诊断准确率而言,目前A I医生在临床使用中的准确率达到90%。

在业界看来,目前“AI+诊断”更多的发力点在于辅助医生及医院的运作,林浩添表示,就未来使用前景来看,AI+诊断以后应该会大规模铺开。大医院主要用于初诊分诊,基层医院则是以筛查为主。“不过在我看来,政策支持和资金投入是目前影响AI铺开渗透的因素”。

AI医疗能替代医生么?

去年以来,有关“为什么说人工智能一定能取代医生”、“人工智能有可能取代哪类医生?”等讨论层出不穷。

但在创投界眼中,上述答案与外界此前理解的会有偏差。以蒋晓东为例,他的观点就是:“人工智能在中国医疗领域的最终形态绝对不是取代医生,而是重塑并搭建中国未来新医疗系统的基础设施。”

众所周知,我国医疗的核心问题主要有以下几点。首先,治疗方案非标准化,医生主观性强,医生质量参差不齐,就医流程非标准化,就医体验差。其次,医疗资源分配不均匀;再次,在错位的医疗激励机制下,药品耗材补贴仍然占医生收入的重要部分,而这可能会削弱医生治疗的客观性。

蒋晓东认为,针对上述第一大问题,人工智能在高质量的医疗大数据及病历、影像、基因等基础上建立可验证、可重复的医疗标准。无论在诊前、诊中、诊后,还是院内和院外,都可以让患者在医疗质量标准化的环境中享受医疗服务。

其次,针对医疗资源分配不均匀的问题,人工智能借助大数据,可将头部医院的医疗能力赋能基层医疗,针对不同病种开发辅助诊疗等功能,让基层医院也可共享头部医院的医疗技术,最终将医疗资源均匀分布在各个层级。

第三,针对医疗客观性的问题,人工智能的介入能建立标准的医疗流程,医生在基于数据的前提下进行疗法、药物和耗材的筛选,并作出对患者最有利的治疗决定,而不受其他因素的干扰。

据了解,AI的运作逻辑主要是基于有自主学习能力的算法和数据积累,即通过算法对大量数据进行深度分析和学习。而在医疗诊断应用方面,中山大学中山眼科中心人工智能负责人林浩添教授认为,如果诊断的疾病具有典型性,实际上需要的数据量相对不用太多。但如果疾病有一定特殊性、诊断难度较高等,则需要较大的数据进行支撑。

不过,随着“AI+诊断”逐步在医疗领域铺开,目前学界也有观点认为,“AI诊断”最终目的并非取代医生,原因在于诊断生物体是一个非常复杂的过程,当中有许多变量。

中国科学院计算基数研究所“百人计划”副研究员赵地曾表示,单是一个“肺结节”,放射科、胸外科的医生看一张检查片,通常要判断十多种疾病存在的可能性,仅仅识别出一个“肺结节”是远远不够的。“但如果还要识别其他疾病,需要花费的研发时间就大大增加了”。另外也有专家认为,基于大数据运作的A I诊断,如果获得质量不高或未经认可的“垃圾”数据,AI系统无法进行相关诊断学习。

相关

1

AI医疗可分几类?

从数据纬度分析来看,AI医疗的数据分类大致可以分为病理数据、影像数据、基因数据、行为数据。

病理数据主要是包含了患者基本情况、病史、用药史、检验数据等,这些数据所在地主要为医院;

影像数据包含了通过DR、CT、MRI等影像设备检测出的影像数据,这类数据所在地主要在医院或影像中心;

基因数据,则包括了通过体液、血液或组织切片进行测序,获得的基因数据,数据所在地主要为医院或测序公司;

数据行为包含了运动、睡眠、饮食等各方面生活行为产生的数据,这类数据所在地主要为可穿戴设备或行为检测APP。

2

AI医疗所用设备如何审批与监管?

某一款AI产品是否为医疗器械?若是则为几类医疗器械?诸如这些问题,已纳入到了国家监管层面。国家食品药品监督管理总局医疗器械技术审评中心一位负责人近期在参加广州相关论坛时就透露,面对AI医疗的出现,该中心前期工作,或将成立AI工作组,将包括学术界、产业界和药监等人员纳入进来。同时,或将重点调研美国AI医疗器械监管模式和要求,并与学术界、产业界保持密切沟通交流。

而后续工作,则将适时启动AI指导原则制定工作,并基于产品风险,实现社会共治。

3

广东正在大力鼓励“AI+诊断”

据广东省卫生统计方面的一位专家透露,已经出台的《广东省促进“互联网+医疗健康”发展计划》(2018-2020年),就明确表示将注重发展人工智能,推动人工智能技术在基层的普及应用,到2020年,医疗健康人工智能技术要基本覆盖县级医院、乡镇卫生院和社区卫生服务中心。

另外,今年3月发布的《广州市加快IAB产业发展五年行动计划(2018-2022年)》中提到,重点推进新一代人工智能在医疗领域中的应用。

南都记者马建忠 贝贝 通讯员邰梦云

作者:马建忠 贝贝返回搜狐,查看更多

责任编辑:

AI医疗:重构医疗体系之路,资本热浪下,AI诊断真的能替代医生吗?

AI医疗:重构医疗体系之路,资本热浪下,AI诊断真的能替代医生吗?

AI时代,掌握AI大模型第一手资讯!AI时代不落人后!

免费ChatGPT问答,办公、写作、生活好得力助手!

扫码右边公众号,驾驭AI生产力!