文章主题:人工智能, 数据标注, 自动驾驶, 互联网企业
编者按:本文来自微信公众号 “新周刊”(ID:new-weekly),作者:徐倩影,创业邦经授权发布。
2023年第一季度,国内多家互联网企业相继推出类ChatGPT产品。
在我国AI领域近期的一项重大突破中,复旦大学邱锡鹏教授团队成功研发出了国内首个对话式大型语言模型MOSS,并邀请广大公众参与其内测阶段。与此同时,百度公司也推出了一款备受瞩目的类ChatGPT产品——“文心一言”。此外,秘塔科技独立研发的LLM大模型“对话写作猫”已经正式投入使用。这些产品的出现,无疑都在提醒我国AI企业要加快自身的技术进步,以适应这个日新月异的市场环境。
在众多互联网巨头纷纷寻求ChatGPT风口的新的商业机会之际,身为一家数据标注公司的杨科琪,他的公司短期内业务量明显上升。然而,这种增长是否能够持续下去,他却无法做出准确的预测。目前,尽管国内AI公司如雨后春笋般涌现,但真正能够实现盈利的企业却寥寥无几。
在2017年,随着无人驾驶汽车和阿尔法围棋(AlphaGo)的崛起,数据标注行业开始受到广泛关注。紧接着,我国国务院在2017年发布了《新一代人工智能发展规划》,这份文件明确了新一代人工智能发展的三步走战略目标,将人工智能提升至国家战略性高度。
在2019年,也就是我国将人工智能训练师纳入国家职业分类目录的前夕,一项新的创业计划在我国西北部的一个小型县城悄然启动。这个计划由杨科琪和他的朋友们共同发起,他们希望在这个相对欠发达的地区,利用人工智能技术提供数据服务,从而创造出一项新的商业模式。杨科琪认为,虽然数据标注工作看似门槛较低,且较为枯燥,但由于其高度的智能化和自动化需求,只有聪明且勤奋的人才能在短时间内掌握并上手。他相信,尽管这样的工作可能无法与传统的职业培训相提并论,但在当前的数字化时代,数据标注作为一种新兴的职业,正逐渐在一些县城地区流行开来。
在2020年,杨科琪从初创公司中离职,并加入了专注于AI数据服务领域的一家专业公司。对于他而言,他坚信数据标注行业未来的发展趋势必然是向专业化与职业化的方向发展。
以下为杨科琪的自述。
是安逸还是无趣?在这座宽敞的办公环境中,共有1000个工位和1000台高性能电脑。目前,这里聚集着800名专业的人工智能训练师,他们每天都在各自的岗位上辛勤工作。他们的任务是通过对大量的图像数据进行精细的分析和处理,来优化和提升人工智能系统的性能。为了给员工创造一个舒适的工作环境,公司特地在每个工位配备了先进的空调系统和稳定的网络设施。此外,为了保证员工的健康和工作效率,每人都有不到2平方米的独立办公空间。在这个充满活力和创新的环境中,人工智能训练师们正努力为我国的技术发展贡献自己的力量。
当前,我们的主要业务领域为自动驾驶项目。在这一过程中,标注人员会遵循系统提供的方框,利用鼠标精细描绘出车辆的大致轮廓。随后,他们会将图像放大至最大尺寸,并仔细调整车辆边界的框线。最后,他们会选择屏幕左上角的车辆属性并完成标注工作。
作为一名具备专业素养的人工智能训练师,其核心职责在于使汽车能够在行驶过程中,自动地识别并理解马路状况。然而,这并非易事,仅通过传递视频给计算机是无法实现这一目标的。为此,我们需要大量的标注员来参与工作,他们需仔细地在视频中标注出道路的位置,然后将这些信息提供给计算机。经过一段时间的训练,计算机会不断地接收这类信息,从而逐步掌握在视频和照片中识别道路的能力。如此一来,人工智能助手便能更好地协助人类驾驶汽车,提高行车安全与效率。
今年3月,德勤中国发布的《人工智能基础数据服务白皮书》显示,人工智能基础数据服务下游应用占比中自动驾驶占到52%。随着自动驾驶AI算法的升级迭代及模型训练数据量的指数级增长,技术迭代带来数据需求“大爆发”。 相比其他项目,自动驾驶业务的持续性更好,而且服务周期也比较长。
人工智能的三大基石是数据、算力与算法。我们数过羊、数过木头,还数过铁块,涉及的行业有医学类、安防类、现在的自动驾驶等,还接过看手相的一个项目,甲方要求我们给手掌上的各种手纹进行标注,很多员工都开始研究手相,挺好玩的。一般而言,视觉类的内容要做到机器准确识别,至少需要10万张图片。对于AI产品,数量越多、质量越高的数据,往往越能够训练出更“聪明”的模型。
标注员一天的工作内容就是画框线,根据项目的难易程度,一个框3—8分钱,工作日8小时要画2000个框以上,人均月收入在3000—4000元。
以我们公司为例,人员流动率在30%—40%,因为工作比较简单,每天8小时坐在电脑前,做着重复性工作,对于有的人而言是一份还算安逸的工作,但对另一些人而言就显得非常枯燥和无趣。
一个AI产品的诞生一般需要经历数据准备、模型训练与优化、模型管理、推理应用等4个模块,在国内已经形成了非常成熟的全产业链。目前,我所在的公司在做的就是数据准备,包括数据生产、数据清洗、数据标注三大方面。像我们这种布局在县城的数据标注公司,一般主要负责数据清洗和数据标注。清除模糊的图片、噪声太多的语音、错误的文本内容后,我们再进行画框线和数据标注,根据甲方的不同需求进行操作。
技能等级认定中的初级工根据《人工智能训练师国家职业技能标准(2021年版)》的定义,人工智能训练师是使用智能训练软件,在人工智能产品使用过程中进行数据库管理、算法参数设置、人机交互设计、性能测试跟踪及其他辅助作业的人员。
在我看来,虽然标注员也被称为人工智能训练师,但如果按照去年发布的《关于开展新职业技能等级认定工作的通知》的内容,标注行业内的人工智能训练师在技能等级认定中应该属于初级工,在其之上还有4个更高的职业技能等级。
其实,拿证和做业务真是两回事。考取职业证书,按照职业教育的要求需要上满 60 个课时,课程中会系统学习人工智能的概念、未来的发展方向,以及相对完整的知识构架逻辑。但是在标注行业,在数据标注公司,聪明、用功的人学习一周就能上手,只要会使用标注工具就能胜任。
标注行业作为劳动密集型产业,运作模式主要有两种。一种是专业AI数据服务提供商自己雇人自己做;另一种是他们接到业务后发包出去,使用更具性价比的人员或公司。我所在的公司也属于后者,“层层发包”在标注行业比较常见。
数据标注发展初期,就是由“众包”模式而兴起,当时有很多众包平台,需求方项目要求有大量兼职人员接单,和目前的美团模式差不多。当年,我们的初创公司也是利用信息差,从数据标注平台接单,在市场上找更便宜的人力资源完成任务,但随着数据标注从野蛮生长阶段进入规范化发展阶段,市场上的兼职人员正在减少。越来越多的兼职业务正在被像我们这样的县城标注公司替代。
2019年,我刚刚创业时,知道数据标注的人不多,这行属于刚刚兴起。现在,这行的入门门槛变高了,参与的人也越来越多,市场压价现象很普遍,与刚入行时相比,价格下降了30%左右,我个人觉得数据标注市场已经有点“红海”了。
目前,大部分互联网企业都在自建基地,比如百度、阿里巴巴、京东等互联网大厂在全国都建立了基地,从而获得政策扶持、租金减免等条件。
人工智能的下一站是县城人工智能训练师流行于县城?我觉得很正常。目前,国内标注行业的价格战愈演愈烈,在质量、效率不断提高的情况下,各大公司拼的无疑就是价格。随着行业的发展,甲方需要不断寻求价格更低的生产力区域,所以各大AI数据服务企业转战县城非常正常。
在县城办公,房租、人力成本相对较低,同时互联网企业确实可以解决一部分人的就业和收入问题。目前,百度拥有行业内最大的自建标注团队,在山东济南、山西临汾、重庆奉节、四川达州、甘肃酒泉、江西新余等10个地区有自建标注基地。
除此之外,政府补贴也是相关企业选择县城的主要原因。2023年1月,贵阳市人民政府网发布的《贵阳鼓励企业吸纳就业政策》中提到,贵阳市符合条件的小微企业、民营经济组织和社会组织吸纳高校毕业生就业的,给予800元/人的一次性吸纳就业补贴及一定额度的创业担保贷款。
数据标注作为劳动密集型产业,当企业更多地选在三四线城市落地,当地政府看重的则是产业化的基地建成后,带动当地就业、促进当地经济发展。智研咨询发布的《2022—2028年中国数据标注与审核行业投资策略探讨及市场规模预测报告》中提到,随着人工智能成为国家发展战略,其势头锐不可当,预计2028年我国数据标注与审核行业市场规模将达262.74亿元。
不久前,Meta发布了史上首个图像分割基础模型——SAM(Segment Anything Model)。有人认为,这代表着计算机视觉领域的GPT-3时刻已经到来。有人说这一模型会替代大量的标注员,我个人认为在数据处理的精度方面,人类无法被替代,至少目前不会,毕竟对于AI产品而言,数据越精准,模型才会越精准。
ChatGPT在社交媒体上引起了巨大的话题度后,国内多家互联网企业相继推出类ChatGPT产品。对我们而言,短期内AI企业对数据标注的需求量还会增加,毕竟数据标注在整个前期产品开发的过程中时间占比可能在全周期的20%—30%之间,目前这一块的数据确实需要大量的人去做。但是,随着平台标注自动化和预识别的发展,未来一部分标注员可能会被淘汰。
未来,数据标注这行一定会向着规范化和职业化发展,因为需求方的类型和要求会增多,也会涉及各个领域的专业性方面。比如医疗,如果没有医学常识很难做好标注;金融数据也是如此,看不懂财报,就没办法做标注。
(应受访者要求,文中杨科琪为化名)
本文(含图片)为合作媒体授权创业邦转载,不代表创业邦立场,转载请联系原作者。如有任何疑问,请联系
人工智能, 数据标注, 自动驾驶, 互联网企业
AI时代,拥有个人微信机器人AI助手!AI时代不落人后!
免费ChatGPT问答,办公、写作、生活好得力助手!
搜索微信号aigc666aigc999或上边扫码,即可拥有个人AI助手!