百融金服张韶峰:AI+金融大数据,3年内天然垄断定局
AI金融助手

百融金服张韶峰:AI+金融大数据,3年内天然垄断定局

 人工智能在算法层面并没有本质突破,之所以近两年呼声高涨,本质是大数据的突破;AI+大数据+征信,应用成熟度高于智能投顾;相较传统方法,大数据征信整体效率提升50%-60%。 来源 ✎ 亿欧网 编辑✎ 王小苹 互联网新金融回归FinTech,新一代金融科技正在革新金融产业链条上的各个环节,提高行业效率,创造新的价值点。并以此推进服务创新、产业转型升级。 亿欧策划了「金融科技50+」系列报道,聚焦大数据、AI、区块链等新型科技,在网贷、消费金融、网络支付、科技保险、互联网银行、产业供应链等领域的实践与创新。解读百融金服张韶峰对金融大数据的理解。 “实在抱歉,一个重要客户。”采访过程中,侃侃而谈的张韶峰一边向记者表达歉意,一边接通电话与他的新客户信诚人寿确认见面时间。 创业公司都是“时间控”。2014年前后,百融、同盾、聚信立、算话征信等公司成立,形成大数据征信的集中创业潮。同时,央行下发了第一批企业征信牌照,开始市场化探索。 3年来,百融金服目前对接客户数量近2000家,辅助审批资产规模2500亿元。与此同时,我国征信服务相关企业数量达到2000多家,包括百融在内的130多家企业征信持牌公司,“没有一家合格的8家个人征信准备机构”是这个万亿级市场的核心玩家。 监管走向、行业整合、差异化竞争——张韶峰断言,“如同2014年团购大战、2016年的出行之争,金融大数据也是天然垄断型的行业,目前正处于快速成形期,未来两三年内会冲出行业巨头。”为此,百融金服正在全力以赴。 数据争夺之战,垂直服务商的机遇 数据量级是大数据征信的核心能力之一。百融金服最早是“百分点”内部的金融事业部,其最初的数据积累也来自于此。 而作为互联网数据的生成方,BATJ掌握着除了政府、运营商以外的绝大多数数据,垂直服务商并不具备优势。但百度侧重搜索、腾讯侧重社交、阿里和京东侧重电商,它们“各自为营”数据维度单一,不利于应对金融风险防范。 此外,张韶峰认为,从互联网巨头目前的金融布局来看,大而全的综合金融集团(如银行模式)是一致选择。因此在数据合作方面,多数银行、消金、互金、小贷等对BATJ都心存忌惮——这给金融大数据服务商留下了发展空间。 天然垄断:第三方服务孕育垂直巨头 不过,我国至今尚未出现市场化的独立第三方大型数据平台的成功案例,其商业模式有待验证。 张韶峰指出:首先,市场需求旺盛。互联网金融、传统金融机构的快速成长,直接促使信贷后端的征信、风控成为刚需。我国拥有各类银行2000多家、小贷公司和担保公司各近10000家、持牌消费金融20多家、正常运营的P2P平台2000多家。 其次,金融服务相对分散、数据服务趋于集中。出于风险考虑,世界上所有大国的金融行业都不可能被少数几家金融机构所垄断,通常做法是扩大金融机构的数量来分散风险。这就为大型数据服务企业奠定了基础。张韶峰认为,“银行业头部10%的客户,足够支撑起一家规模可观的垂直服务商。” 另一方面,金融大数据服务虽然竞争激烈,但行业整体趋向集中。在大数据的“硬件/基础设施-大数据软件处理-行业模型应用”3层产业链条中,不具备核心竞争力的企业将逐渐沦为大型企业的附庸,如目前市面上的很多数据供给渠道商。 参考美国个人征信市场,已经形成金字塔格局: 3大巨头Experian、Equifax、TransUnion的地位数十年来难以被撼动,下面是2000多家小型垂直数据公司。绝大多数银行金融机构倾向于与服务能力强的3家巨头中的一两家进行长期合作。而这3家巨头会与小型数据商合作,从而能够打造出综合能力强的服务和产品来供给银行。 征信只是大数据金融应用的其中一环,除此之外还有金融产品设计、精准营销、不良资产管理、智能投顾等关键环节,需要超强的综合能力。张韶峰指出。 “因此,金融大数据领域天然垄断的市场格局是必然趋势,中国市场在未来2、3年内定型。” 这一过程中,尤其需要明确“金融服务”和“科技服务”的区别。金融企业“低市值、重资本”的属性,并不适合互联网的“轻运营”模式。相反,科技服务公司能够通过高门槛建造竞争壁垒,马太效应、雪球效应显著。同时,也更受资本市场青睐,更易于做高估值。 “与互联网类似,金融大数据企业的边际成本急剧降低、聚集效应明显,这是百融定位科技服务公司的关键原因。” 人工智能+大数据+征信,应用成熟度高于智能投顾 传统征信行业存在“覆盖人群有限、审核周期较长、信息采集面有限”等弊端,而这正是AI、大数据、云计算等新型科技优化、重塑服务链条的发力点。 “其实,人工智能在算法层面并没有本质突破,之所以近两年开始凸显,本质原因是大数据先取得了突破——足够多的数据,让AI机器学习获得了最重要的基础。” 张韶峰指出,人工智能在金融领域的应用主要在于: 智能风险评估和管理;智能投顾服务。不过,智能投顾的呼声似乎更高,原因之一是投资理财属于高频需求,更贴近普惠大众;而风控服务靠近金融服务链条的后端,且贷款属于低频行为。但事实上,在技术应用层面,后端风险管理的应用成熟度更高。 虽然2者都是通过数据分析、技术模型来评估并服务个人用户,但智能投顾还必须分析投资理财产品,所以短期内真正大规模应用的难度比较大——原因并不在技术本身,而是相对于个人行为,投资理财产品变化趋势更难以预测,尤其是二级市场存在数据透明度低、政策因素强、产品种类少等问题。 “目前,百融金服通过深度学习模型处理50万个基础变量,相较传统方法,整体效率提升了50%-60%。其中营销环节成功率提升30%以上,个人不良率降低7成。” 自上而下,势能传导 在2014年大数据风控创业热潮中成立的企业中,百融、同盾、聚信立等企业在服务体系上多有相似,但具体打法上存在差异。 张韶峰指出,初创企业多采用“自下而上”的方法,针对中小客户,开发单一产品(黑名单、发欺诈等)切入市场,然后丰富产品类型,铺开信贷全流程业务,再向银行、持牌金融机构等高端客户拓展。这种方法前期起量快,能够迅速做大规模和估值,但后劲不足。 与之相反,百融在初期就首先从银行客户入手,设定了“自上而下”的路径:①风控产品采取按月、单项、后付费的方式,创造更多赢利点;②整体解决方案产品的定价高于行业平均水平,聚焦中高端金融机构的客户——以此形成自上而下的势能传导。 对于这一方式造成的前期市场开拓、获客的成本压力,张韶峰坦言,“百融以更高成本聘请高层次的技术开发人员、数据分析与建模师、顾问式的销售人员。这种自上而下的模式前期投入较高,但金融机构天生比较倾向于向比自己大的机构学习,也倾向于选择服务过大机构的服务商,因为大机构对服务商的考核更加严苛。” “但这种模式的优势在于,一旦形成势能,中后期能迅速占领市场,迅速降低人均成本、提高人均绩效。据了解,目前与同行依靠大规模地推式销售模式,百融的销售人员总占比15%,低于行业平均水平,人均综合产出相比部分同行高出2-3倍。” 经营业绩上,2016年百融营收实现同比15.6倍增长,今年Q1实现了现金流转正。 长按二维码,关注黑马学吧
金融领袖集中营:大数金融、大道金服、招商基金、度小满金融、腾讯理财通、汇付天下、中银慧投、国泰君安道合APP、利得金融科技与拍拍贷
AI金融助手

金融领袖集中营:大数金融、大道金服、招商基金、度小满金融、腾讯理财通、汇付天下、中银慧投、国泰君安道合APP、利得金融科技与拍拍贷

这篇文章主要介绍了大数金融、大道金服创始人兼CEO柳博以及招商基金、度小满金融、腾讯理财通、汇付天下、中银慧投、国泰君安道合APP、利得金融科技和拍拍贷等8家金融公司。这些公司在金融行业有着显著的贡献和影响力,为我国的经济发展和金融稳定做出了重要贡献。
AI金融:未来已来,金融行业迎来新变革
AI金融助手

AI金融:未来已来,金融行业迎来新变革

李开复老师在《人工智能》一书中指出,智慧金融是AI目前最具潜力的应用领域。金融机构积累了大量数据,并早已开启自动化系统和数据标注等基础设施建设,这为AI应用提供了良好的基础。金融科技正在改变传统银行的运营方式,金融科技创新者的竞争也日益激烈。尽管AI技术仍处于不断发展阶段,但在金融行业的应用前景广阔。
《人工智能赋能金融:未来金融业的机遇与挑战》
AI金融助手

《人工智能赋能金融:未来金融业的机遇与挑战》

这篇文章主要探讨了人工智能在金融行业的应用和发展。今年,金融机构开始积极布局AI领域,因为它已成为金融机构抢占下一个金融高地的必须落子之处。同时,人工智能也被列入我国高新技术上实现弯道超车,建立科技强国必须拿下的阵地。人工智能已经具有了官方支持色彩,金融被视为AI最佳的融合、变现场景。金融机构纷纷投入重金精兵进行战略性布局。预计AI将重塑金融场景,为金融行业注入新鲜血液,开启智能金融时代。文章最后提出了一些关于智能金融前景的问题,引人深思。
金融科技路线图:从互联网金融到AI金融
AI金融助手

金融科技路线图:从互联网金融到AI金融

本文探讨了金融科技从互联网金融到人工智能的应用和发展趋势。随着技术的不断跃迁和竞技者的升级,监管机构也在密切关注行业的进展。目前,人工智能在金融领域的应用仍处于初级阶段,但 already有所表现。
6位顶尖专家,重新定义AI金融的6种未来丨CCF-GAIR 2019
AI金融助手

6位顶尖专家,重新定义AI金融的6种未来丨CCF-GAIR 2019

▲点击上方 雷锋网 关注 CCF-GAIR 2019 AI金融论坛全回顾。  文 | 王艺  编者按:7月12日-7月14日,2019第四届全球人工智能与机器人峰会(CCF-GAIR 2019)于深圳正式召开。峰会由中国计算机学会(CCF)主办,雷锋网、香港中文大学(深圳)承办,深圳市人工智能与机器人研究院协办,得到了深圳市政府的大力指导,是国内人工智能和机器人学术界、工业界及投资界三大领域的顶级交流博览盛会,旨在打造国内人工智能领域极具实力的跨界交流合作平台。 大会第二天上午,在聚焦金融行业AI技术应用的「AI金融」专场,六位顶尖AI金融技术与产品专家齐聚,为与会者带来了一场别开生面的主题论坛。 微众银行杨强:用联邦学习解决数据隐私难题 香港科技大学讲席教授、微众银行首席AI官、IJCAI理事会主席杨强教授作为主会演讲嘉宾及AI金融专场开场嘉宾。在AI金融专场,杨强教授为与会者带来题为《联邦学习的最新发展及应用》主题演讲。 演讲开始,他先介绍了微众银行两年来所取得的成就。杨强教授表示,微众银行在金融业务的各个环节均已实现自动化。从贷前业务咨询环节的企业画像,到贷中身份核实、资料审核,再到放款操作环节。此外,微众银行在一些辅助环节,如智能客服、录音质检等也在应用智能自动化技术。目前,微众银行98%的客户问题由智能客服机器人解答,其系统能够进行多轮对话并进行情感分析。 有趣的是,在小微企业贷款方面,微众银行不仅做线上自动化,还做线下自动化。为了解决线下企业风险核查耗时耗力的问题,微众开发了一款线下核验头盔机器人。申请人只需佩戴该头盔设备周游工作场地,即可自动识别风险。 与此同时,杨强教授也强调,在小微企业信贷过程中,出现了一些挑战,业界需要寻求新的解决方案。 第一,如何对抗干扰信号。以金融领域为例,当申请人对面部信息作假时,如何应对?第二,如何在只有小数据的领域应用深度学习。 杨强教授谈到,往往高质量、有标签的数据都是小数据,且不能随着时间的推移进行累积,因为每个阶段的数据和上个阶段都呈现不同的分布,甚至特征都不尽相同。这一问题在金融、医疗、法律场景非常常见。这就意味着,要解决这一问题,需要多方数据打通,联合建模。 但这其中又遇到了问题,那就是数据的隐私保护。2018年,欧盟提出史上最严数据保护法GDPR,足见数据隐私在人工智能发展道路上的重要性。在这样的大环境下,合并数据变得异常困难。 为应对这一问题,杨强教授倡导「联邦学习」(Federated Learning),他以人们合作创作作品为例进行了解释。在两个人或多个人共同写书的过程中,合作者的大脑并非物理地连结在一起,人们用语言交流,传递参数。在这一过程中,人类是有能力保护大脑中的隐私的。 联邦学习参与各方先用本地数据建立模型,再将这个模型的关键参数加密,得到一个即使传到云端也无法解密的包。千万个包用算法加以聚合,得到高精度的模型,再将该模型下传,供个体使用。整个过程中Server、云端均接触不到包内的实际内容。 杨强教授表示,联邦学习技术已经在微众银行得以应用。微众银行的合作企业中包含互联网企业、车企、保险企业等。这些合作方拥有用户大量的不同维度行为信息。应用联邦学习,微众银行能够与合作方联手,针对同一批用户在不交换数据的前提下进行建模。实践证实,AUC指标得以提升,不良率大为下降。 此外,杨强教授还介绍了联邦学习在城市管理、语音识别等领域的应用。杨强教授表示,联邦学习的发展需要建立生态,共同推进。与此同时,杨强教授也在积极推动相关国际标准与参考框架的建立。 京东数科&ZRobot乔杨:不仅要关注黑,更要服务好白 京东数科生态中心信用管理部总经理&ZRobot CEO乔杨在风控行业已有10余年的经验,他曾长期供职世界500强企业——Discover美国发现金融,兼备技术与金融的跨界实力与中美两国的世界级金融科技视角。 现场,乔杨就「数字科技驱动的信贷反欺诈技术」同与会者进行了探讨。ZRobot成立于2016年10月,旨在利用高维度数据资源,结合数据挖掘技术及模型算法,借助京东数科丰富的实践应用场景,打磨自身技术实力并赋能合作伙伴。目前,ZRobot已与近300家银行、保险、证券、信托、小贷公司、持牌机构、消金以及融资租赁公司展开合作,为客户提供智能风控、智能营销解决方案等各类产品支持。 乔杨现场分享了ZRobot在信贷反欺诈方面进行的尝试与取得的成果。 乔杨表示,随着移动互联网的发展,欺诈分子应用的手段层出不穷,产品类型不断迭代进化。现在欺诈已成为一门生意,欺诈分子和团伙多为非常勤奋且聪明的人。早期的欺诈手段往往是员工腐蚀机构,现在已经发展为潜入机构、自营骗贷等更有手段的欺诈方式。与此同时,金融机构对欺诈的防范往往处于滞后状态,这为反欺诈工作的开展带来了阻碍。 乔杨表示,虽然业内已经有很多成熟的可以利用的机制,比如建立良好的内控合规机制、客户管理体系,但往往无法识别三方欺诈的风险。 要识别三方欺诈,第一步要做好交易对手的身份识别。乔杨介绍,当前一些移动APP可从前端抓取多达200余个用户标签,在此之上进行特征延伸拥有很大的空间。常用的做法包括抓取纬度信息,利用陀螺仪检测设备仰角、滑动轨迹等,同时通过前端SDK进行浅层次的生物识别,已经能够做到在用户体验不受影响且不需要额外硬件支持的情况下进行有效的反欺诈识别。 在中国,欺诈行业的群体作案呈现上升趋势,欺诈团伙已经形成了非常完善的上下游产业链。因此,单单识别个人的欺诈风险是不够的,需要由点及面,通过机器学习及复杂的网络技术对用户及周围群体的关联关系进行判断。ZRobot已经积累大量的前端数据用于数据库关联,具体包括设备关联、地址关联、通信关联等。 乔杨认为「近朱者赤,近墨者黑」,与业界的通常做法不同的是,ZRobot不仅将关联关系用在黑名单节点,在白名单上也有所应用。「我们提出的概念是不仅要关注黑,更要服务好白」,乔杨说。 宜信向江旭:用AI实现「以用户为中心」的财富管理 宜信公司高级副总裁、首席技术官向江旭先生一上台就向在场嘉宾透露了一个好消息,宜信旗下品牌,也是国内首家海外上市金融科技公司——宜人贷目前已完成品牌升级,将线上能力与线下资产结合,定名宜人金科。 宜信成立于2006年,是业内领先的财富管理公司。宜信在支付、网贷、众筹、机器人投顾、智能保险、区块链等前沿领域均有积极布局,并通过业务孵化和产业投资参与全球金融科技创新。 关于宜信在信贷行业地位,向江旭谈到,经过13年的耕耘,宜信已经在业界取得了傲人的成绩。「业内有这样一个说法:一个用户想申请贷款,如果他曾经从宜信拿到过贷款,那么其他机构就不用审核了。」向江旭说。 然而在CCF-GAIR 2019 AI金融专场,向江旭不谈信贷,转而和与会人员聊起了智能化的财富管理。 向江旭表示,中国财富管理规模在6万亿,与美国的9万亿尚有一定差距。中国财富管理线上化渗透率为35%,与之相比,美国为40%。中国拥有50余家财富管理公司,而美国拥有300多家。就财富科技的投资规模而言,中美几乎持平。 总体来看,虽然在财富管理市场中美存在一定差距,但中国的增长率很高,产业投入也更高。这就意味着中国的财富管理潜力更大。2007-2016十年间,中国财富管理市场规模以年化20%的复利增长。2016-2018年增长率保持在12%,可预期的未来几年时间内,增长速度仍将维持在双位数。 财富管理行业的目标客户为可投资产在1000万人民币以上的高净值人群以及可投资产在100万人民币以上的大众富裕阶层。在中国,高净值人群截至今年年底将达到220万,未来几年大众富裕阶层人群很快会达到3000万的规模。 向江旭表示,这两类人群对于智能财富管理均有非常强烈的期待。高净值客群一般而言长期享受私人银行家、理财师、金融顾问服务,但尽管如此,这类人群对线上实时获取股票信息、资产状况、财经资讯、投资理财教育内容仍有迫切需求。对于大众富裕阶层而言,很可能他们人生中的第一款投资理财产品就是在线上购买的,这类人群对线上的理财投资及智能化财富管理有天然的需求。 通过大数据技术,宜信能够了解客户对投资理财、家族传承,对创富、守富、传富的需求,也即财富管理行业的KYC。向江旭介绍,这些数据包括客户的电商购物行为轨迹、线下财富管理讲座活动的参与经历等。获得用户画像后再利用AI技术将客户与产品进行精准匹配。 向江旭认为,以前的财富管理是以产品为中心的,很多理财产品网站相当于一个理财超市,这并不是宜信希望看到的财富管理方式。宜信希望用大数据及人工智能技术将以产品为中心的财富管理过渡到「以用户为中心」的财富管理,真正做到千人千面的资产配置模式。 平安寿险沈剑平:深挖应用场景,让AI赋能寿险各业务线...
《蚂蚁金服构建开放平台:S2B2C模式助力智能化》
AI金融助手

《蚂蚁金服构建开放平台:S2B2C模式助力智能化》

这篇文章介绍了蚂蚁金服如何利用开放平台的概念,打造出S2B2C的模式,并通过引入智能客服、数据共创等技术,将AI技术和大数据技术应用于投前、投中、投后的智能化。此外,一年多的平台开放也使得用户触达更为精准,例如,蚂蚁财富AI产品司南系统可以在5秒、2秒、1秒内提供每日运营自动化策略、业务测评报告和实时控、报警、智能分析归因等功能。
探索中国传统文化的魅力:一生的文化之旅
AI金融助手

探索中国传统文化的魅力:一生的文化之旅

这篇文章主要介绍了如何成为一名优秀的文章写作高手。首先,要明确自己的角色和目标,即以写作为职业并追求卓越。其次,要不断学习和实践写作技巧,包括研究和分析优秀文章、多写多练和反思总结。最后,要保持对写作的热爱和专注,充分发挥自己的才华和创造力,创作出高质量的文章作品。总之,成为一名优秀的文章写作高手需要不断的努力和实践,同时保持对写作的热爱和专注。
《探索未来:人工智能助手的专题推荐之路》
AI金融助手

《探索未来:人工智能助手的专题推荐之路》

这篇文章探讨了如何成为一名优秀的文章写作高手。首先,要明确自己的角色和目标,其次需要不断学习和实践,同时关注细节和语言表达的准确性。最后,要保持对写作的热情和对知识的渴望,才能在文章创作中取得更好的成绩。
《人工智能在互联网金融中的实践与应用》
AI金融助手

《人工智能在互联网金融中的实践与应用》

这篇文章主要探讨了人工智能在金融领域的应用,特别是在客户服务、投资顾问、风险控制等方面的具体应用场景。文章指出,人工智能的应用相较大数据而言的核心突破在于深度学习、智能分析和最终的智能决策。此外,还介绍了人工智能在金融产业链中的各个环节的应用,如上游的数据提供和基础设施提供商,中游的分析,以及下游的行业竞争格局。最后,文章以智能投顾为例,详细阐述了其发展背景、历程、技术支撑、业务模式以及国内的市场参与者。