金融科技巨头崛起!有连云入选CHINAAIGC100,AI金融应用引领者未来何以引领?
AI金融助手

金融科技巨头崛起!有连云入选CHINAAIGC100,AI金融应用引领者未来何以引领?

《非凡资本榜上添彩,有连云入选CHINA AIGC 100》通过专业投行非凡资本发布的榜单,展现了AI应用企业中的翘楚——有连云的优秀实力。专注金融AIGC领域的有连云凭借其在金融AI应用的领先地位和创新解决方案,如麒麟金融场景商用AI大模型,针对行业痛点提供高效服务,未来将继续引领行业发展。
金融AI新标杆!北信源发布首大模型,引领行业智能化防护潮流?
AI金融助手

金融AI新标杆!北信源发布首大模型,引领行业智能化防护潮流?

头部网络安全企业纷纷加速AI布局,北信源发布金融领域首个大模型应用,整合AI提升产品效率与智能化防护。通过将AI技术如大模型应用于即时通信平台和金融场景,提供高效信息交互、智能问答等服务,同时针对金融机构的安全需求,其AI模型在安全性、扩展性和复杂问题解决上表现出独特能力。北信源执行总裁王晓娜表达了持续研发投入的决心,计划以信源密信产品为入口,深化AI应用,提升用户体验与行业竞争力。
金融大模型革命来袭?探究现状、挑战与未来应用
AI金融助手

金融大模型革命来袭?探究现状、挑战与未来应用

本文总结了大模型在重塑金融业态中的现状和发展历程,指出ChatGPT的出现引领AI商业化新高潮,人工智能正迈向通用智能阶段。国内互联网公司、科技厂商纷纷布局,如百度、阿里巴巴和华为等发布大模型产品。金融行业成为大模型落地应用的重点场景,已有多家金融机构加入,如工商银行等。然而,金融机构在应用中也面临算力、算法和数据挑战。随着政策的规范和技术的进步,预计大模型将加速金融行业的智能化进程并重塑基础设施。
大模型对金融用户有什么价值?终于有人说清了
AI金融助手

大模型对金融用户有什么价值?终于有人说清了

当我们聚焦于时下热议的大模型时,它已不再只是帮助企业降本增效的工具,而是一个实实在在能为用户创造价值的重要角色。 上周,在Datafun举办的“数智金融技术峰会——金融大模型论坛”中,峰会主席奇富科技首席算法科学家费浩峻,携手奇富科技高级算法总监杨剑、数据挖掘总监林月冠、大模型资深算法专家王述,带来主题为“金融智能化革命:大模型背后的业务洞察和逻辑推理”“信贷场景用户画像构建与应用” “LLM+Data如何重塑金融机构”的精彩分享,不仅回答了大模型在企业端的实际应用问题,更是揭示了大模型在用户端所带来的真实价值。 在福建某山区小县城,有一家名叫“绚彩织坊”的布艺工坊,由老板秦女士经营。一场大客户欠款危机,直接导致2023年年初员工工资无法按时发放。临近过年,秦女士心急如焚,跑遍县城的各大银行,可银行却对她爱莫能助——征信“白户”的标签,成为了秦女士贷款路上的绊脚石。银行要么让她办理抵押贷款,要么让她必须先在银行做结算、过半年才能申请信用贷款。 被银行拒绝后,秦女士开始求助互联网借贷平台。在多个平台的算法中,秦女士被识别为普通消费户,只能拿到了几千到一万元的额度,距离她十多万元的需求相去甚远。 艰难时刻,秦女士找到了奇富科技旗下产品360借条。注册后,基于知识图谱和自研的大语言模型,360借条人工智能引擎精准识别了秦女士经营者的身份,给出12万元的额度,解了她的燃眉之急。 AI的努力并不止于此。随着对数据的不断积累和画像信息的完善,秦女士的信用额度不断提高,最终达到了20万。 而在这个过程中,奇富科技大模型还精细化了原有的动支预测模型,在预测到秦女士有借款需求时,为她自动发放了利率优惠券,降低了借贷成本。360借条以高效简洁的审批和还款流程,为秦女士提供了便捷的资金周转服务。 今年,秦女士在360借条上一共申请了7次借款,每次都是在关键时刻,满足了她对资金周转的需求。 大模型的注入,受益的绝非秦女士一人。在用户画像方面,奇富科技小微识别模型整体AUC达0.9以上,模型额外识别兼职、家庭小微等小微身份用户500多万,使得已标识小微用户规模扩大25%。 为了更好地服务用户,奇富科技还在国标行业分类的基础上对客群进行了行业特征的重新定义与划分,将企业所属行业利用模型进行重新打标,有行业信息的小微用户覆盖达93.1%。通过重新打标,利用对专家知识的融合、推理与发现,奇富科技构建了覆盖900多个行业信息的金融知识图谱,贯穿用户整个生命周期。到3季度末,奇富科技已为中国2450多万小微和家庭兼职小微用户赋予了适用于信贷场景的行业标签,便于今后能更好地根据行业特性服务小微用户的资金周转。 对每个用户而言,奇富科技所提供的,已经超越了单纯的科技服务,更像是一位默默见证创业历程的亲密伙伴。在每一次陪伴与帮助中,奇富科技都坚守初心,践行着金融科技平台的使命。而正是在大模型的推动下,奇富科技为小微企业注入了生机与希望。这,才是金融科技的使命所在。
金融大模型蓄势待发
AI金融助手

金融大模型蓄势待发

金融行业是高价值行业,数字化基础好、高度依赖数据和技术,是大模型落地的高潜场景。但是,金融作为一个强监管且对精准性、可控性要求很高的行业,通用大模型在金融核心领域应用上还面临诸多挑战。作者:胡群 封图:东方IC 2023年8月31日,百度“文心一言”、商汤科技“商量SenseChat”、智谱AI“智谱清言”等首批国产大模型产品正式面向公众开放服务。 当通用大模型已在正式落地,金融核心领域离大模型应用还有多远? 目前度小满、恒生电子、马上消费金融等公司已先后发布金融大模型,蚂蚁集团有望在今年的外滩大会上发布大模型。在银行领域中,农行已率先推出ChatABC,并不断迭代升级;工行、交行、招行、平安银行、兴业银行等多家银行已披露其在大模型领域的探索及应用。 “大模型让机器具有了常识,懂得了逻辑,学会了创作,让人和机器能以更自然的方式互动,通过与周边工具的结合,大模型已经具有了通用人工智能的雏形,在营销、电商和内容等许多领域已经形成了生产力”。度小满CTO许冬亮认为,金融行业是高价值行业,数字化基础好、高度依赖数据和技术,是大模型落地的高潜场景。但是,金融作为一个强监管且对精准性、可控性要求很高的行业,通用大模型在金融核心领域应用上还面临诸多挑战。 爆发前夜 8月28日,中国工程院院士倪光南在金融大模型发展论坛暨马上消费金融大模型发布会上表示,金融行业的人工智能应用要求高、场景丰富,是大模型技术和算法突破的沃土。 今年5月份,度小满开源了国内首个千亿级中文金融大模型“轩辕”,开源以来已经有上百家金融机构申请试用。 6月28日,恒生电子和旗下子公司恒生聚源发布基于大语言模型技术打造的数智金融新品:金融智能助手光子和全新升级的智能投研平台War-renQ,恒生电子金融行业大模型LightGPT也首次对外亮相。“LightGPT将于9月底完成新一轮的金融能力升级,并正式开放试用接口。”恒生研究院院长、恒生电子首席科学家白硕称。 8月9日,奇富科技宣布与360智脑达成在大模型方向与落地应用等多个层面的战略合作。 8月23日,北大光华金融系主任、教授刘晓蕾在“北大光华-度小满金融大模型技术与应用论坛”上表示,AIGC的发展正在从概念开始走向落地应用,从“通用大模型”走向“行业大模型”。而金融行业作为人工智能应用场景密集的行业,无疑是大模型技术落地的最佳领域之一。 8月28日,马上消费金融发布零售金融大模型“天镜”。据马上消费金融人工智能研究院院长陆全透露,该模型已运行近3个月,意图理解准确率达91%,相较于传统AI的68%有较大提升;客户参与率61%,高于传统模型43%的参与率,也高于人工坐席平均28%的水平。 在上市银行2023年半年报中,多家大中型银行已披露其在大模型领域的进展。 工行在中报中表示,完成人工智能大模型能力建设应用规划,在国内同业率先实现百亿级基础大模型在知识运营助手、金融市场投研助手等多个场景应用,并与头部科技公司合作探索千亿级人工智能大模型在金融行业的创新应用实践;交行则称,积极探索AIGC(生成式人工智能)前沿技术,制定生成式人工智能建设规划,组建GPT大模型专项研究团队,为体系化、规模化应用奠定基础;邮储银行表示,积极探索数字员工、NLP(自然语言处理)对话机器人、预训练大模型等前沿技术领域课题研究,促进创新技术融合应用。 股份行方面,招行称,正加快新技术应用推广,提升GPT类自然语言处理大模型的建设能力,并重点发掘其在全流程财富管理中的应用,投产FinG-PT创意中心,加快大模型应用模式探索;平安银行探索自研BankGPT平台,研究构建大模型文本生成、图片生成等能力,及其在图标头像、节日海报、个性化营销内容创作、交互式数据分析、非结构化数据洞察等场景中的应用落地。兴业银行引入部署私有化的商业大模型,上线大模型产品ChatCIB;中信银行与华为、雄安新区成立联合创新实验室,布局大模型等联创课题;浙商银行与头部科技公司基于通用大模型合作开发场景化的数字化应用技术,打造一批有浙银辨识度和行业竞争力的重大数字化应用。 一位国有大行研发中心大模型研发负责人向经济观察报记者表示,对于金融科技,银行更针对应用,而非聚焦基础研究,因此各家银行积极与金融科技厂商合作大模型在金融领域场景的应用。 尚未触及核心领域“目前为止,大模型在银行主要应用于智能客服、智能运营、写文章、写邮件等方面,但是这些应用均不涉及银行的核心应用”。光大信托数据公司总经理祝世虎表示,银行的核心应用在风险管理、资本管理和监管科技等方面。“尽管生成式AI技术具有许多潜在的优势,但在使用时仍需谨慎。银行需要确保AI生成的内容准确、合规和符合品牌形象。此外,监督和审查AI生成内容的过程也是必要的,以确保生成的内容不涉及虚假宣传、误导性信息或违反相关法规。”中国银行业协会首席信息官高峰认为,生成式AI技术根据指定的主题、风格和要求,帮助银行快速生成高质量的内容,降低人工操作成本和时间成本。“毫无疑问,大模型将给整个行业带来无限可能。大模型使得企业掌握和运用知识的效率有了革命性提升,特别是对于财富与资管这类知识密集型行业而言,尤其值得期待。”8月25日,招行首席信息官江朝阳在招银浦江金融科技论坛上表示,财富与资产管理行业将有望成为金融大模型应用最先应用的行业之一。他预测,未来的市场,大模型不会一家独大,将会有多个基础大模型,这既是技术成本降低带来的可能性,也是社会多元化发展的现实需求。当前我国居民家庭资产中的不动产配置比例将趋于下降,金融资产配置比例有望快速提升。根据麦肯锡报告,中国居民金融资产规模将从2022年末的243万亿元提升至2032年末的571万亿元,年化增速9%,资产管理行业规模有望在2030年突破280万亿元。现阶段我国居民金融资产配置中现金和存款占比仍然较高,超过50%,相比之下,成熟市场的存款占比仅15%,居民财富结构将持续优化。“运用科技提升能力,这是财富与资产管理行业的确定性机会。”江朝阳认为,无论是资产配置、投资者教育,还是投研分析、风险管理,每一个环节都要以数字化手段再造,提升效率、提升投资者体验、提升价值创造能力。“人工智能在金融行业的应用潜力目前可能只发挥了不到1%。谁能将人工智能的优势尽早应用于业务,谁就能成为金融行业引领者。”许冬亮表示,金融数据集中在各个金融公司里,对于金融机构而言,数据是核心生产力,相互之间也是竞争关系,不太可能把自己核心的生产资料共享出来。加之监管因素以及用户数据的隐私保护的因素,金融领域的高质量数据未来仍将是分散的。波士顿咨询发布的《银行业生成式AI应用报告(2023》显示,若能在银行业实现生成式AI规模化应用,有望带来可观的降本增效收益。波士顿咨询曾以一家拥有约两万名员工的区域性国际银行为例,初步梳理了该银行前中后台相关部门应用生成式AI的潜力和效益,预计在首年即可为该银行节省约1.5亿美元的成本,占整体薪酬总包的7%左右。 如何破局 马上消费金融副总经理兼首席信息官蒋宁认为,作为生成式大模型,ChatGPT虽满腹经纶,但回答错了并不承担风险。生成式大模型不能做解释,但金融大模型最主要的能力是判别性,需要做交易决策。在工业领域、金融领域的应用还面临诸多难题,比如金融领域的业务需要百分之百合规、安全,不能有一点点差错,不然就会对交易造成重大伤害。 波士顿咨询董事总经理、全球合伙人谭彦认为,当前市场通用的生成式AI模型具备普适、跨行业通用、模糊语言的特性,而这难以满足银行业对金融专业能力、精准性方面的高要求。因此,如何让生成式AI模型“说专业的话”“说真话”就成为了银行业规模化应用生成式AI的两个关键挑战。此外,银行等金融机构对数据安全的高要求也意味着模型的精调和应用都很有可能需在本地进行。 在度小满数据智能部总经理杨青看来,大模型应用于金融核心领域还面临行业监管严格、GPU算力不足、优质数据缺乏、通用大模型金融能力不足以及场景落地难挑战。金融本身是一个高合规要求的行业,大模型又是具有颠覆性的新技术,当前对它的风险还没有完全了解,随着大模型落地的不断推进,如何平衡大模型落地收益和潜在合规风险,会是一个越来越突出的问题。 如何解决大模型在金融行业落地应用的这些难题,许冬亮认为每家机构独立去解决这些问题既不现实,也不经济,科技公司和金融机构在金融大模型上的合作非常有必要,“科技巨头提供通用大模型,或者技术能力强的金融科技公司提供金融行业大模型,具体的金融机构基于这个行业底层模型,用自己的业务数据去做私域的训练,然后做私有化的部署和应用”。 祝世虎认为,大模型在银行业的落地路径将呈现大合作与大创新并举的局面:底层基础大模型将由头部人工智能公司提供、中间会是金融业人工智能公司、上层任务型大模型则由银行与人工智能公司合作开发。 专访吴晓求:中国资本市场一定要完成功能转型改革认缴出资制不宜走回头路谭旭光:唯有改革 | 中国重汽五年登顶启示录
金融行业拥抱AI,大模型的闯关与机遇——揭秘’最后一公里’!?
AI金融助手

金融行业拥抱AI,大模型的闯关与机遇——揭秘’最后一公里’!?

本文将探讨AI大模型在金融行业的应用进展、挑战与解决方案,以腾讯金融云技术总监全成的视角,解析如何让大模型成功落地并服务金融业,覆盖了行业价值、现状分析、落地规则以及金融机构的实际部署方式等内容。观众可通过扫描海报二维码或预约直播来获取更多信息,并有机会在直播中向专家提问。
国内首个零售金融大模型来了
AI金融助手

国内首个零售金融大模型来了

中国基金报记者 冯尧大模型在各行各业遍地开花,这一次轮到零售金融赛道。8月28日,消费金融巨头马上消费在金融大模型发展论坛中发布其“天镜”大模型,这也是国内首个零售金融大模型。与传统通用大模型不同的是,金融大模型面对的更多是结构化的金融数据和知识图谱。用马上消费首席信息官蒋宁的话说即为,“我们希望任何情况下,大模型给出的回答是合规的,并且任何不可预期情况下,其给出的结果是稳定的。”在论坛中,中国信通院、重庆国家应用数学中心还和马上消费牵头发起“金融大模型可信安全验证与联合创新行动计划”,参与这一计划的还包括阿里云、腾讯云、中国科学院自动化研究所等机构。大模型还有四大难题待解“金融行业人工智能应用要求高、场景丰富,是大模型技术和算法突破的沃土,”中国工程院院士倪光南在8月28日论坛上如是表述。 不过,在蒋宁看来,通用大模型在工业领域、金融领域,大模型还有四个关键难题待解。他表示,大模型目前还面临关键性任务和动态适应性、个性化要求和隐私保护、群体智能与安全可信和基础设施的能力四大难题。“生成式大模型最大的问题是满腹经纶,回答错了可以不承担风险,”蒋宁直言。他以自动驾驶中的刹车、提速、转弯等操作为例,“随着外界环境不断变化,自动驾驶决策绝对不能出错,1%的错都会造成生命财产损失。”蒋宁认为,金融大模型与自动驾驶的案例一脉相承,和传统大模型最大的区别是生成式模型不能做解释,但是金融大模型则具有判别性,“它需要做交易决策。”他表示:“我们希望在任何情况下,给客户的回答都是合规的,并且任何不可预期情况下,结果是稳定的”。欧洲科学院外籍院士、清华大学人工智能研究院常务副院长孙茂松也有类似看法。他表示,生成式人工智能目前的一大特点是一定会出错。因为通用大模型对文本语言比较重视,对数字并不敏感,而金融数据大部分是结构化知识图谱,所以通用大模型在金融领域有不少挑战。形成“三纵三横”布局基于此,马上消费在论坛上发布了国内首个消费金融大模型——“天镜”大模型。蒋宁解释,天镜大模型的推出基础在于,马上消费作为以科技驱动的头部持牌消费金融机构,积累了1.79亿用户,已经有超2000个模型,10万+变量,近50PB多模态、高质量数据等,通过在这些自身数据上做模型精调对齐训练,同时再用推理加速技术实现模型可控,因此相对通用大模型更懂金融。其次,他透露,在算力平台方面,马上消费现拥有近万台服务器和近千张GPU储存卡。据悉,该模型已运行近3个月,意图理解准确率达91%,相较于传统AI的68%有较大提升。另外,“天镜”大模型目前客户参与率61%,高于传统模型43%的参与率,也高于人工坐席平均28%的水平。例如,将企业招股书、财报、经济预测数据等文件上传后,“天镜”大模型可以深入解析金融领域专业术语、同时拥有查询定位多个不同文档、洞悉金融图表隐含的信息和强大归纳总结能力。而且,大模型SQL生成平台不再需要代码等专业指令,可直接向AI发出自然语言。随后天镜自动理解需求、展开检索、生成答复,按照用户意思去完成数据挖掘任务。据透露,当前,天镜每日线上SQL生成数量650多次,线上SQL生成可执行比例53.4%,SPIDER标准数据集EX得分75.2,线上使用者满意反馈比例82.3%。蒋宁表示,马上消费目前已形成“三纵三横”的大模型发展技术布局,并领航构建可信、合规、多模态、适配全域、泛化的金融大模型技术能力体系,聚焦行业领先的基础语言特性能力、逻辑和推理能力、语义理解、生成与创作、金融领域能力、安全与合规能力等六大核心领域,进一步推动金融数字化转型产生实质性提升。所谓三纵,是指实时人机协作、多模态智能、数据决策智能,在数据领域实现智能化,实现结构性数据判别式模型的综合能力。三横即是指持续学习、模型合规、组合式AI形成安全、合规、可信的鲁棒性技术能力,确保让模型越用越聪明,同时更稳定、更安全可控。打造全能数字员工基于三纵三横,马上消费人工智能研究院院长陆全围绕打造全能数字员工这一核心,对天镜大模型在汇集智慧、唤醒知识、众创价值、数字分身四大应用场景进行了诠释。他表示,汇集智慧方面是应用人工客服主要场景。“通过大模型提炼萃取一线优秀人工坐席客服经验,汇聚成群体智慧,从而拥有一对多服务客户的能力,也可作为人工坐席的辅助角色,帮助推荐、优化回答,”他表示。他希望打造的“数字外表+智慧大脑+情感内心”三合一数字人,不仅擅理解、有温度、懂心理,而且还是不休不眠的智能“打工人”。在他看来,每个员工都可以能轻松拥有自己数字分身,上传自己的资料并定制一些参数后,只需5分钟的训练数据就可以生成“另一个我”。随时可以被唤起,成为人人都拥有的超级助手,代替员工完成大量工作。编辑:小茉审核:许闻版权声明 《中国基金报》对本平台所刊载的原创内容享有著作权,未经授权禁止转载,否则将追究法律责任。 授权转载合作联系人:于先生(电话:0755-82468670)
金融行业的大模型机遇与挑战:如何跨越理论与实践鸿沟?
AI金融助手

金融行业的大模型机遇与挑战:如何跨越理论与实践鸿沟?

今年金融行业首落地AI大模型,但因其场景复杂性要求高,大模型与实践间存在距离。华为通过系统化工程建设,提供"小蛮腰"解决方案,聚焦于金融行业的AI应用,包括优化基础设施、融入决策与现代化运营、升级客户交互及产业金融服务等层面,以盘古金融大模型为基础,整合金融知识和技能,并确保安全合规,旨在推动金融行业智能化的全面升级。
逐鹿金融大模型
AI金融助手

逐鹿金融大模型

来源 | 零壹财经作者 | 沈拙言编审 | 赵金龙在关于金融大模型的诸多讨论中,“落地应用”成了最终关键词。对金融业务而言,精准与安全合规是任何技术得以应用的最大前提。因此,金融大模型的应用便绝非简单的“拿来主义”,需要在通用基础上结合业务需求反复精调,这也是当前金融大模型的主要发力点。7月末,据腾讯研究院副秘书长杨望调研分析,国内参数在10亿规模以上的大模型数量已由5月末的79个增加至116个,其中金融行业大模型约18个。有观点认为,大模型的出现,可能会把金融机构的数字化转型进程拉到同一起跑线,填补金融机构间的“转型鸿沟”,这对中小金融机构来讲是不容错过的机遇。在保证信息精度与安全合规的前提下,抢先获得金融业务场景的商用突破,成为18家金融大模型研发机构竞争的决胜点。 01 各显神通抢赛道 3月底,全球最大的财经资讯公司彭博社发布拥有500亿参数的大型语言模型——BloombergGPT,标志着全球首个金融大模型的诞生,也掀起了国内金融大模型的浪潮。 彭博社表示,该大模型在3630tokens金融数据集、3450亿tokens公共数据集之上进行训练,可全方位支持金融领域NLP(自然语言处理)任务,表现明显优于其他类似规模的开放模型,在一般NLP基准上的表现也达到甚至超过平均水平。 BloombergGPT一声炮响,给国内带来了实践方向。 图1:国内主要金融大模型时间轴(不完全统计) 来源:零壹智库 5月,大数据基础软件供应商星环科技推出第一款面向金融量化领域的生成式大语言模型“无涯Infinity”。据其介绍,无涯Transwarp Infinity支持股票、债券、基金、商品等市场事件的全面复盘、总结及演绎推理,以及政策研报的深度分析,为基金经理提供决策辅助。 5月下旬,度小满推出国内首个千亿级中文金融大模型“轩辕”,该模型是在1760亿参数的Bloom大模型基础上训练而来,聚焦于金融名词理解、金融市场评论、金融数据分析和金融新闻理解等任务。度小满CTO许冬亮表示,轩辕大模型基于度小满实际业务场景积累的海量金融数据进行训练,保证在提升金融能力的同时,不会损失通用能力。 6月,恒生电子发布金融行业大模型LightGPT。据其介绍,LightGPT使用了超4000亿tokens的金融领域数据(包括资讯、公告、研报、结构化数据等)和超过400亿tokens的语种强化数据(包括金融教材、金融百科、政府报告、法规条例等),并以之作为大模型的二次预训练语料,支持超过80+金融专属任务指令微调。 6月29日,拓尔思发布拓天大模型,并面向媒体、金融、政务领域推出了三大行业大模型。在金融大模型上,公司基于自有的110亿+金融主题数据、百亿级产业指标数据、30亿+产业要素明细数据、2亿+产业动态本体、500+以上标引维度、10000+知识标引规则、10万+产业标签作为专业训练数据。就在日前,拓尔思发布公告,计划募资18亿元用于拓天行业大模型研发及AIGC应用产业化项目。 7月,马上消费透露将正式发布自主大模型,聚焦“自主动态强化学习能力的大模型(AIGC+RLHF)、多种模型组合式的AI系统、多模态音视频实时人机结合”三项核心关键能力,致力解决金融行业大模型在落地过程中的安全可控和隐私保护、基础设施能力建设等方面的关键问题。 在金融大模型浪潮中,财富管理机构与运营商也不甘落后。海通证券、申万宏源、广发证券、兴业证券、长江证券、西南证券、国海证券、国盛证券、华福证券、财达证券10家券商宣布成为百度“文心一言”首批生态合作伙伴,以同花顺、东方财富为代表的财富管理运营商也公告称将重点打造AI投顾平台,深入AIGC、交互式AI等领域的研究,完善内容生态构建,增强智能运营能力。 腾讯云则瞄准金融安全领域,推出金融风控大模型,锚定机构交易、信贷、营销等场景的风控需求。腾讯云天御首席科学家李超认为,风控尤其是贷前风控环节有着最紧迫的需求,在信贷领域,因黑产造成的欺诈已经占到了整个逾期规模的40%-70%。 科大讯飞发布的大模型产品“讯飞星火智能客服”,以帮助金融机构提高客户服务效率和质量,提升用户体验为主旨。讯飞星火智能客服产品在意图理解能力、专业知识应用能力、对话设计与交互能力、个性化表达能力四个层面取得了全面提升,未来还会进行迭代升级,探索与金融场景更贴近、更有价值的技术服务。 文因互联公布了基于“文因大模型”联通多个金融场景的解决方案。根据介绍,该解决方案覆盖债权发行、IPO、ESG评级评价、智能投研、智能投顾、信贷评估、债券评级、合规审计、新闻写作、工业维修等多个场景,定位是“为金融人提供安全高效副驾驶”。 与产品相对应的是,一些行业标准也初露端倪。7月末,腾讯云与中国信通院共同启动行业大模型标准联合推进计划,双方宣布联合牵头中国首个金融行业大模型标准的编制工作。 据介绍,该标准对金融行业大模型的评估方法覆盖了投研、投顾、风控、营销、客服、银行、保险、证券等应用场景,并对大模型在数据合规性、可追溯性、私有化部署、风险控制等方面提出要求。  02 应用层策略之争 金融大模型的应用与商业化同根同源,商业化是最终目标,应用是实现商业化的必要路径。 由于应用的方向不同,金融大模型所展现出来的能力也不同。按照模型能力输出的方式,具体可以分为中心化和非中心化两种方式。 中心化模式即企业调用通用大模型或第三方垂直模型的 API 去构建业务功能;非中心化模式则是企业根据使用场景和功能,以专有数据对通用模型进行微调,形成一个或多个基于实际业务的小模型。 腾讯云金融大模型的应用策略,是风控层面的从零到整。具体而言,针对金融机构动态化风控建模的需求,把专家经验抽象成一系列风控策略集,进而组成风控大模型,再以风控大模型应对假人假机、假人真机、真人假机的欺诈行为。 据报道,某金融机构的渠道和客群变化较快,基于传统的专家联合建模方式效率较低、成本较高,无法满足风控系统快速迭代要求,接入腾讯云行业大模型后,模型迭代周期从17天缩短到3天,建模效率提升60%。 这一做法与交叉信息核心技术研究院常务副院长林常乐的观点不谋而合。林常乐提出了大模型中的相关专业领域参数与专业模型相结合的技术路线,通过将专业模型的精度参数写入大模型,实现专业领域模型与大模型的衔接。 恒生电子与恒生聚源共同推出的智能投研平台WarrenQ-Chat,则是追求金融信息的精准度,用户通过对话指令,轻松获得金融行情、资讯和数据,且每一句生成的对话均支持原文溯源,确保消息出处可追溯。 科大讯飞“星火智能客服”则更注重以AI能力提升客户交互体验。据科大讯飞研究院副院长、金融科技事业部CTO 赵乾介绍,星火智能客服基于泛领域开放式知识问题能力、大模型和行业知识库及外部APP对接,可以解决新知识难更新、事实类问答容易“张冠李戴”等问题;通过情景式思维链逻辑推理,可为用户推荐个性化产品,赋能营销获客。 百川智能创始人王小川认为,大模型80%的价值可能蕴含在非中心化的模型和服务里。  03 商业化将向何处? 据极客公园报道,有消息表示,随着监管明确,第一批合规模型放出是值得期待的。同时目前在 To B 领域的应用上,实际上已没有官方的合规要求,这将助推大模型落地企业,也将推动工具层和应用层发展。 但面向C端,合规先行是必然趋势。正如国家金融与发展实验室副主任杨涛所说,当人工智能大模型在金融领域应用时,更需关注大模型的可审计性、可解释性等难题以及参与金融活动引发的风险特征变化、数据保护、责任分担、合规边界等问题,并强化数据伦理、算法伦理、主体伦理、行为伦理等方面的治理。 中国工程院院士、复旦大学金融科技研究院院长柴洪峰认为,目前大模型在金融垂直领域仍未挖掘出涌现效应。 一方面,由于金融数据及知识的私密性导致难以共享,无法构建一个庞大的数据集,对此可以增强产学研的联动性,共同构建更强的金融垂直领域基座模型;另一方面由于金融数据模态更多,难以进行统一的处理建模,而如今的大模型对此种多模态的表达能力仍有待加强。 文因互联创始人鲍捷则提出了关于商业化层面的约束问题,金融客户并没有无限的预算,通常只有几十万最多几百万的前期投入。实际约束往往来自于分布式训练、数据清洗过程、提示词优化、各种数据格式,以及为达到更好的训练效果如何平衡全参数训练和提示工程的比例、降低成本,这都是需要在实际项目中解决的难题。 有从业者认为,当前金融大模型在商业化上的探索,最终的客户依然会落在中小金融机构上。从监管环境、市场竞争、数据安全等多个角度来看,头部金融机构都没有使用外部大模型的理由和意愿。 这意味着在头部金融机构自研的过程中,中小金融机构同已有的成熟大模型合作,争取到了一定的追赶空间,是补足数字化差距的绝佳窗口期。 同时,与中小金融机构的合作,也是考验大模型提供方在应用层中定制化能力的绝佳战场。 正如工商银行首席技术官吕仲涛所言,综合考虑投入和产出性价比,中小金融机构可按需引入各类大模型的公有云API或私有化部署服务,直接满足赋能诉求。...