来源:咸宁新闻网时间:2024-04-07 13:46当下,大模型技术已应用到金融各大场景,解决了金融行业的系列痛点。在大模型技术领域,度小满早有布局。《2024年金融业生成式人工智能应用报告》发布会上,度小满CTO许冬亮表示,度小满在金融大模型上积极探索,始终致力于技术成果的开放共享,希望通过全尺寸轩辕大模型的持续开源,降低金融大模型的应用门槛。
大模型将演进为超级智能体,重构企业业务流程
“短期看,大模型是数智化的延伸,为企业降低成本提升效率;长期看,大模型将演进为超级智能体,重构企业业务流程”,1月24日,在清华大学经济管理学院、度小满、《麻省理工科技评论》中国等共同举办的《2024年金融业生成式人工智能应用报告》发布会上,度小满CTO许冬亮表示。
他认为2024年将会是生成式人工智能应用涌现的一年,大量提升生产力的应用即将出现。在B端场景,生成式人工智能将把数智化带到新的高度,大幅提升数据创造价值的效率。在C端场景,大模型已经在从大语言模型向多模态大模型、Agent智能体、甚至具身智能方向进化,这些新能力的注入,会极大提升AI的人类交互能力和任务处理能力。
度小满CTO许冬亮
度小满在金融大模型上积极探索,开源大模型“轩辕”
以下是演讲全文:
刚刚过去的2023年无疑是生成式人工智能的元年。ChatGPT的智能涌现,让生成式AI获得前所未有的关注,大型科技公司、各类创业公司和科研机构迅速入场,投入了海量资源,推动了大模型能力和应用的快速演进。
基础模型层面,根据GitHub的统计数据,到23年底国内已经发布的大语言模型接近300个,文心一言、智谱GLM等为代表的通用基础模型,以GPT-4为目标持续迭代,追赶速度远超预期,多项能力已经接近甚至超越GPT-4;但受限于行业数据壁垒,通用模型还是难以胜任许多行业垂直场景,这就为垂直领域模型的出现和发展带来了机遇。
场景应用层面,企业和个人开发者广泛尝试了大模型在各领域的应用。首先是大模型原生应用,比如ChatGPT、文心一言、Midjourney等,这些应用最大化发挥了大模型的技术特性,为用户带来耳目一新的使用体验。其次是集成型的大模型应用,典型案例比如百度AI搜索等C端应用和Office copilot、Adobe firefly等B端应用。B端大模型应用已经成为了企业数智化的一部分,增强了企业应用本身的能力。
过去一年,度小满在金融大模型上积极探索。在23年5月我们开源了国内首个千亿参数金融大模型“轩辕”,9月份又开源了轩辕70B金融大模型,在多个权威榜单上名列开源第1,金融能力更是突出,高分通过了注册会计师考试(CPA)等金融领域十大类权威考试,在一些专业金融问题上甚至超越GPT-4。就在本月,我们又开源了更小参数版本的轩辕13B,聚焦更小参数下更强的场景应用性。度小满始终致力于技术成果的开放共享,希望通过全尺寸轩辕大模型的持续开源,降低金融大模型的应用门槛。
大模型在金融行业的应用需要业界群策群力。《2024年金融业生成式AI应用报告》中分享了生成式AI在金融行业应用的实践。未来,度小满将发挥行业引领作用,积极破解技术难题,以创新技术重塑金融行业发展格局。