ChatGPT:黑科技还是安全隐患?人工智能的未来在哪里?
AI律师助手

ChatGPT:黑科技还是安全隐患?人工智能的未来在哪里?

ChatGPT作为人工智能领域的黑科技,展现出强大的语言处理能力,但其安全问题突出,主要包括数据隐私泄露、模型攻击(如窃取、推断和投毒)、Prompt Injection及劫持等,涉及隐私、伦理和社会责任等多个领域。为确保ChatGPT的健康发展,需从技术、法律等多维度进行研究与监管。
ChatGPT能颠覆签证顾问工作?金融行业迎来AI革命风暴!
AI创业助手

ChatGPT能颠覆签证顾问工作?金融行业迎来AI革命风暴!

本文讨论了ChatGPT对基础工作和行业如签证咨询、金融分析可能的替代影响。一方面,AI展现出了能够学习和提供未训练知识的能力,挑战人类的经验;另一方面,金融从业者如朱峰和紫金投资分析师陈大鹏认为AI在信息收集和数据分析方面已触及行业门槛,打破了经验壁垒。学界人士赖晓铮则强调AI并不具备魔法,其有效性和局限性在于编程和提示的精确程度。文章通过对比和专家观点,反映了AI革命对既有工作模式的冲击与人类适应新挑战的过程。
揭秘黑盒未来!OpenAI新研究让GPT-4开口说话;Shap-E颠覆想象,3D模型生成器引领PE
AI律师助手

揭秘黑盒未来!OpenAI新研究让GPT-4开口说话;Shap-E颠覆想象,3D模型生成器引领PE

本文涵盖了多个AI领域的最新进展。OpenAI发布研究探讨神经网络黑盒并开源Shap-E模型生成器;Meta推出ImageBind模型,强化多感官AI能力;IBM推出了Watsonx平台以支持生成式AI和数据管理;“ChatGPT之父”Sam Altman的WorldCoin项目正准备应用于AI点餐;出门问问计划赴港IPO,其估值受AI大语言模型推动;Anthropic发布AI宪法强调道德价值观建设。这些动态展示了人工智能领域的活跃研究和发展。
股价狂飙背后,联络互动的债务风暴与ChatGPT概念的迷思
AI律师助手

股价狂飙背后,联络互动的债务风暴与ChatGPT概念的迷思

面对股价异动和巨额债务诉讼,联络互动的经营状况陷入困境。公司因贷款逾期遭工行杭州分行起诉,涉及金额达4.48亿,目前处于立案受理阶段。尽管已经采取资产抵押等措施并积极处理,但其债务问题、业绩预报显示的大幅亏损以及持续经营能力的不确定性引发了市场关注和深交所的关注函。在股价飙升的同时,公司内部及外部投资方的动向也引起了投资者注意。
ChatGPT能替代律师吗?法律边界何在?
AI律师助手

ChatGPT能替代律师吗?法律边界何在?

文章指出,虽然CHATGPT在知识信息总结与提炼上可能有潜力替代部分解题思维的律师工作,但在案件关键判断和决策性解决方案上,它无法取代律师的专业洞察。律师朋友设计的问题巧妙地绕过了ChatGPT,显示其在法律问题上的专业性和复杂性仍需人类律师的经验和判断。ChatGPT在中国法律咨询领域的应用案例说明了其在提高效率和质量方面的作用,但并未触及其与律师职业的替代性问题。ChatGPT本身对于是否能取代律师的回答暗示了这一角色的独特价值和服务不可被完全替代。
医学界新宠!LLMChat如何重塑医疗?一文解析其超强能力
AI医师助手

医学界新宠!LLMChat如何重塑医疗?一文解析其超强能力

本文探讨了LLM在医疗领域的应用前景。首先,从医疗需求出发,AI技术主要服务于重复性劳动的效率提升和适当场景提醒的能力增强。然后,LLM通过处理文书工作和信息抽取任务,在医生侧帮助减轻负担,提高决策质量;同时,它改善患者服务,解决资源不平衡问题,优化医疗服务时间和质量。尽管LLM目前在深度医疗理解方面有限,但其在文本处理、信息抽取方面的出色能力已显现,有望成为医疗行业的重要辅助工具。
万字长文解读:从Transformer到ChatGPT,通用人工智能曙光初现中方凌晨发布重要消息,中俄外长会晤内容公布,美国担忧的事发生
AI情感助手

万字长文解读:从Transformer到ChatGPT,通用人工智能曙光初现中方凌晨发布重要消息,中俄外长会晤内容公布,美国担忧的事发生

ChatGPT掀起的NLP大语言模型热浪,不仅将各家科技巨头和独角兽们推向风口浪尖,在它背后的神经网络也被纷纷热议。但实际上,除了神经网络之外,知识图谱在AI的发展历程中也被寄予厚望。自然语言处理是如何伴随人工智能各个流派不断发展、沉淀,直至爆发的?本文作者将带来他的思考。作者 | 王文广出品 | 新程序员自ChatGPT推出以来,不仅业内津津乐道并纷纷赞叹自然语言处理(Natural Language Processing, NLP)大模型的魔力,更有探讨通用人工智能(Artificial general intelligence,AGI)的奇点来临。有报道说Google CEO Sundar Pichai发出红色警报(Red code)并促使了谷歌创始人佩奇与布林的回归,以避免受到颠覆性的影响[1][2][3]。同时,根据路透社的报道,ChatGPT发布仅两个月就有1亿用户参与狂欢,成为有史以来用户增长最快的产品[4]。本文以ChatGPT为契机,介绍飞速发展的自然语言处理技术(如图1所示)。 图1 ChatGPT引发 Google“红色警报” [1][2][3]从机器翻译到ChatGPT:自然语言处理的进化自然语言处理的历史可以追溯到1949年,恰好与共和国同龄。但是由香农的学生、数学家Warren Weaver发布的有关机器翻译的研讨备忘录被认为是自然语言处理的起点,比1956年达特茅斯会议提出“人工智能(Artificial Intelligence,AI)” 的概念还略早一些。二十世纪五、六十年代是自然语言处理发展的第一阶段,致力于通过词典、生成语法(图2)和形式语言来研究自然语言,奠定了自然语言处理技术的基础,并使得人们认识到了计算对于语言的重要意义。这个阶段的代表性的成果有1954年自动翻译(俄语到英语)的“Georgetown–IBM实验”,诺姆·乔姆斯基(Noam Chomsky)于1955年提交的博士论文《变换分析(Transformational Analysis)》和1957年出版的著作《句法结构(Syntactic Structures)》等。 图2 句法分析示例,来自《知识图谱:认知智能理论与实战》图4-5,P149[6]在二十世纪六、七十年代,对话系统得到了发展,比如SHRDLU、LUNAR和ELIZA(图3)。麻省理工学院的SHRDLU采用句法分析与“启发式理解器(heuristic understander)”相结合的方法来理解语言并做出响应。LUNAR科学自然语言信息系统(Lunar Sciences Natural Language Information System)则试图通过英语对话的方式来帮助科学家们便捷地从阿帕网(ARPA net)获取信息,这倒像是当前爆火的ChatGPT雏形。ELIZA是那时对话系统的集大成者,集成了关键词识别(图4)、最小上下文挖掘、模式匹配和脚本编辑等功能[5]。 图3 ELIZA对话系统,摘自维基百科ELIZA词条 图4 ELIZA系统中关键词挖掘的流程图[5]随着自然语言处理任务愈加复杂,人们认识到知识的缺乏会导致在复杂任务上难以为继,由此知识驱动人工智能逐渐在二十世纪七、八十年代兴起。语义网络(Semantic Network)和本体(Ontology)是当时研究的热点,其目的是将知识表示成机器能够理解和使用的形式,并最终发展为现在的知识图谱[6]。在这个阶段,WordNet、CYC等大量本体库被构建,基于本体和逻辑的自然语言处理系统是研究热点。进入二十世纪末二十一世纪初,人们认识到符号方法存在一些问题,比如试图让逻辑与知识覆盖智能的全部方面几乎是不可完成的任务。统计自然语言处理(Statistical NLP)由此兴起并逐渐成为语言建模的核心,其基本理念是将语言处理视为噪声信道信息传输,并通过给出每个消息的观测输出概率来表征传输,从而进行语言建模。相比于符号方法,统计方法灵活性更强,在大量语料支撑下能获得更优的效果。在统计语言建模中,互信息(Mutual Information)可以用于词汇关系的研究,N元语法(N-Gram)模型是典型的语言模型之一,最大似然准则用于解决语言建模的稀疏问题,浅层神经网络也早早就应用于语言建模,隐马尔可夫模型(Hidden Markov Model,HMM)和条件随机场(Conditional Random Fields ,CRF)(图5)是这个阶段的扛把子。在搜索引擎的推动下,统计自然语言处理在词法分析、机器翻译、序列标注和语音识别等任务中广泛使用。 图5...
万字长文解读:从Transformer到ChatGPT,通用人工智能曙光初现《无间》大结局,沈啸至死不知,花向雨就是他“死去”的女儿!
AI情感助手

万字长文解读:从Transformer到ChatGPT,通用人工智能曙光初现《无间》大结局,沈啸至死不知,花向雨就是他“死去”的女儿!

ChatGPT掀起的NLP大语言模型热浪,不仅将各家科技巨头和独角兽们推向风口浪尖,在它背后的神经网络也被纷纷热议。但实际上,除了神经网络之外,知识图谱在AI的发展历程中也被寄予厚望。自然语言处理是如何伴随人工智能各个流派不断发展、沉淀,直至爆发的?本文作者将带来他的思考。作者 | 王文广出品 | 新程序员自ChatGPT推出以来,不仅业内津津乐道并纷纷赞叹自然语言处理(Natural Language Processing, NLP)大模型的魔力,更有探讨通用人工智能(Artificial general intelligence,AGI)的奇点来临。有报道说Google CEO Sundar Pichai发出红色警报(Red code)并促使了谷歌创始人佩奇与布林的回归,以避免受到颠覆性的影响[1][2][3]。同时,根据路透社的报道,ChatGPT发布仅两个月就有1亿用户参与狂欢,成为有史以来用户增长最快的产品[4]。本文以ChatGPT为契机,介绍飞速发展的自然语言处理技术(如图1所示)。 图1 ChatGPT引发 Google“红色警报” [1][2][3]从机器翻译到ChatGPT:自然语言处理的进化自然语言处理的历史可以追溯到1949年,恰好与共和国同龄。但是由香农的学生、数学家Warren Weaver发布的有关机器翻译的研讨备忘录被认为是自然语言处理的起点,比1956年达特茅斯会议提出“人工智能(Artificial Intelligence,AI)” 的概念还略早一些。二十世纪五、六十年代是自然语言处理发展的第一阶段,致力于通过词典、生成语法(图2)和形式语言来研究自然语言,奠定了自然语言处理技术的基础,并使得人们认识到了计算对于语言的重要意义。这个阶段的代表性的成果有1954年自动翻译(俄语到英语)的“Georgetown–IBM实验”,诺姆·乔姆斯基(Noam Chomsky)于1955年提交的博士论文《变换分析(Transformational Analysis)》和1957年出版的著作《句法结构(Syntactic Structures)》等。 图2 句法分析示例,来自《知识图谱:认知智能理论与实战》图4-5,P149[6]在二十世纪六、七十年代,对话系统得到了发展,比如SHRDLU、LUNAR和ELIZA(图3)。麻省理工学院的SHRDLU采用句法分析与“启发式理解器(heuristic understander)”相结合的方法来理解语言并做出响应。LUNAR科学自然语言信息系统(Lunar Sciences Natural Language Information System)则试图通过英语对话的方式来帮助科学家们便捷地从阿帕网(ARPA net)获取信息,这倒像是当前爆火的ChatGPT雏形。ELIZA是那时对话系统的集大成者,集成了关键词识别(图4)、最小上下文挖掘、模式匹配和脚本编辑等功能[5]。 图3 ELIZA对话系统,摘自维基百科ELIZA词条 图4 ELIZA系统中关键词挖掘的流程图[5]随着自然语言处理任务愈加复杂,人们认识到知识的缺乏会导致在复杂任务上难以为继,由此知识驱动人工智能逐渐在二十世纪七、八十年代兴起。语义网络(Semantic Network)和本体(Ontology)是当时研究的热点,其目的是将知识表示成机器能够理解和使用的形式,并最终发展为现在的知识图谱[6]。在这个阶段,WordNet、CYC等大量本体库被构建,基于本体和逻辑的自然语言处理系统是研究热点。进入二十世纪末二十一世纪初,人们认识到符号方法存在一些问题,比如试图让逻辑与知识覆盖智能的全部方面几乎是不可完成的任务。统计自然语言处理(Statistical NLP)由此兴起并逐渐成为语言建模的核心,其基本理念是将语言处理视为噪声信道信息传输,并通过给出每个消息的观测输出概率来表征传输,从而进行语言建模。相比于符号方法,统计方法灵活性更强,在大量语料支撑下能获得更优的效果。在统计语言建模中,互信息(Mutual Information)可以用于词汇关系的研究,N元语法(N-Gram)模型是典型的语言模型之一,最大似然准则用于解决语言建模的稀疏问题,浅层神经网络也早早就应用于语言建模,隐马尔可夫模型(Hidden Markov Model,HMM)和条件随机场(Conditional Random Fields ,CRF)(图5)是这个阶段的扛把子。在搜索引擎的推动下,统计自然语言处理在词法分析、机器翻译、序列标注和语音识别等任务中广泛使用。 图5...
「揭秘GPT:大模型原理、应用与局限」
AI情感助手

「揭秘GPT:大模型原理、应用与局限」

本文通过探讨大语言模型如GPT的工作原理及优势,指出其与传统AI的区别在于能统一NLG层处理通用问题,通过海量知识和统一模型实现多类型任务解决能力。ChatGPT基于GPT模型,通过自监督学习展示了强大的语言理解和广泛的知识储备。然而,由于模型庞大,回复速度较慢且不确定性较高,适合简单直观应用如客服、心理咨询等场景。作者将GPT的应用分为五个层面:基本的文本生成作为交付物,预制带槽位提示词模板以降低输入风险,跨语言交流利用其分析问题能力,代码编写和数据分析提供辅助,以及与AI联动的协同工作。同时,文章强调了有效分解问题以利用GPT的能力,并提到了未来可能的发展方向。总的来说,ChatGPT作为一款引领时代的工具,展示了强大的潜力,但用户在使用时应注意其限制并结合具体应用场景。随着技术的进步和中文数据的积累,中国有望拥有自主开发的大模型,为AI领域带来更多价值。
万字长文解读:从Transformer到ChatGPT,通用人工智能曙光初现文咏珊真放得开,两块布料当裙子,没遮住多少,却意外地性感优雅
AI情感助手

万字长文解读:从Transformer到ChatGPT,通用人工智能曙光初现文咏珊真放得开,两块布料当裙子,没遮住多少,却意外地性感优雅

ChatGPT掀起的NLP大语言模型热浪,不仅将各家科技巨头和独角兽们推向风口浪尖,在它背后的神经网络也被纷纷热议。但实际上,除了神经网络之外,知识图谱在AI的发展历程中也被寄予厚望。自然语言处理是如何伴随人工智能各个流派不断发展、沉淀,直至爆发的?本文作者将带来他的思考。作者 | 王文广出品 | 新程序员自ChatGPT推出以来,不仅业内津津乐道并纷纷赞叹自然语言处理(Natural Language Processing, NLP)大模型的魔力,更有探讨通用人工智能(Artificial general intelligence,AGI)的奇点来临。有报道说Google CEO Sundar Pichai发出红色警报(Red code)并促使了谷歌创始人佩奇与布林的回归,以避免受到颠覆性的影响[1][2][3]。同时,根据路透社的报道,ChatGPT发布仅两个月就有1亿用户参与狂欢,成为有史以来用户增长最快的产品[4]。本文以ChatGPT为契机,介绍飞速发展的自然语言处理技术(如图1所示)。 图1 ChatGPT引发 Google“红色警报” [1][2][3]从机器翻译到ChatGPT:自然语言处理的进化自然语言处理的历史可以追溯到1949年,恰好与共和国同龄。但是由香农的学生、数学家Warren Weaver发布的有关机器翻译的研讨备忘录被认为是自然语言处理的起点,比1956年达特茅斯会议提出“人工智能(Artificial Intelligence,AI)” 的概念还略早一些。二十世纪五、六十年代是自然语言处理发展的第一阶段,致力于通过词典、生成语法(图2)和形式语言来研究自然语言,奠定了自然语言处理技术的基础,并使得人们认识到了计算对于语言的重要意义。这个阶段的代表性的成果有1954年自动翻译(俄语到英语)的“Georgetown–IBM实验”,诺姆·乔姆斯基(Noam Chomsky)于1955年提交的博士论文《变换分析(Transformational Analysis)》和1957年出版的著作《句法结构(Syntactic Structures)》等。 图2 句法分析示例,来自《知识图谱:认知智能理论与实战》图4-5,P149[6]在二十世纪六、七十年代,对话系统得到了发展,比如SHRDLU、LUNAR和ELIZA(图3)。麻省理工学院的SHRDLU采用句法分析与“启发式理解器(heuristic understander)”相结合的方法来理解语言并做出响应。LUNAR科学自然语言信息系统(Lunar Sciences Natural Language Information System)则试图通过英语对话的方式来帮助科学家们便捷地从阿帕网(ARPA net)获取信息,这倒像是当前爆火的ChatGPT雏形。ELIZA是那时对话系统的集大成者,集成了关键词识别(图4)、最小上下文挖掘、模式匹配和脚本编辑等功能[5]。 图3 ELIZA对话系统,摘自维基百科ELIZA词条 图4 ELIZA系统中关键词挖掘的流程图[5]随着自然语言处理任务愈加复杂,人们认识到知识的缺乏会导致在复杂任务上难以为继,由此知识驱动人工智能逐渐在二十世纪七、八十年代兴起。语义网络(Semantic Network)和本体(Ontology)是当时研究的热点,其目的是将知识表示成机器能够理解和使用的形式,并最终发展为现在的知识图谱[6]。在这个阶段,WordNet、CYC等大量本体库被构建,基于本体和逻辑的自然语言处理系统是研究热点。进入二十世纪末二十一世纪初,人们认识到符号方法存在一些问题,比如试图让逻辑与知识覆盖智能的全部方面几乎是不可完成的任务。统计自然语言处理(Statistical NLP)由此兴起并逐渐成为语言建模的核心,其基本理念是将语言处理视为噪声信道信息传输,并通过给出每个消息的观测输出概率来表征传输,从而进行语言建模。相比于符号方法,统计方法灵活性更强,在大量语料支撑下能获得更优的效果。在统计语言建模中,互信息(Mutual Information)可以用于词汇关系的研究,N元语法(N-Gram)模型是典型的语言模型之一,最大似然准则用于解决语言建模的稀疏问题,浅层神经网络也早早就应用于语言建模,隐马尔可夫模型(Hidden Markov Model,HMM)和条件随机场(Conditional Random Fields ,CRF)(图5)是这个阶段的扛把子。在搜索引擎的推动下,统计自然语言处理在词法分析、机器翻译、序列标注和语音识别等任务中广泛使用。 图5...