人工智能与医学诊断:10年内可取代医生吗?
AI医师助手

人工智能与医学诊断:10年内可取代医生吗?

这篇文章表达了作者对人工智能在医学领域的前景和角色的看法。他认为虽然人工智能在诊断和治疗方面具有优势,但在临床实践中仍存在许多复杂的问题,需要医生的经验和情感支持。作者希望技术的发展能帮助医生提高工作效率,有更多时间与患者沟通,关注患者的情绪需求。
5G远程医疗移动平台与养老陪伴机器人:创新医疗服务新模式
AI医师助手

5G远程医疗移动平台与养老陪伴机器人:创新医疗服务新模式

文章主要讲述了河南推动中原城市群与大湾区一体化进程,同时介绍了5G远程医疗移动平台和养老陪伴机器人在经济交融、产业承接等领域的新进展和新动向。该平台利用5G技术,依托医院内部智慧医疗平台,为医疗资源相对短缺地区的患者提供权威专家的远程诊疗服务。此外,该平台解决了传统远程会诊图像不清晰、数据传输卡顿延迟等问题,并可自由组合配件,满足不同科室的需求。拓普智造公司的研发总监邓富豪表示,他们一直致力于用AI技术解决医疗领域中的实际性问题,助力医疗智能化发展。
AI医生时代来临:医疗领域智能化趋势加速
AI医师助手

AI医生时代来临:医疗领域智能化趋势加速

近日,浙大邵逸夫医院 AI 医生助理正式上线,仅需 5 秒即可生成规范化电子病历,引发广泛关注。随着 AI 技术在医疗领域的应用不断加深,平安好医生、讯飞晓医等线上平台纷纷跟进上线“AI 医生”功能,产业增长空间有望进一步拓宽。此外,人工智能 ETF(159819)的管理费率加托管费率仅为 0.2%/ 年,可助力投资者便捷、低成本把握产业投资机遇。
AI技术能否替代真人医生?
AI医师助手

AI技术能否替代真人医生?

新一波流感爆发,医疗资源紧张,医生连续工作,患者等待时间长。 AI技术发展或改善医疗资源不平衡状况,但真医生与AI医生之间的差异和挑战仍需克服。 AI技术可作为医生助手,提高效率和准确度,但无法替代真医生的临床经验和共情能力。 未来应关注医疗领域AI应用的伦理和法律问题,确保患者权益,同时促进医疗领域持续创新和进步。
AI医生助理助力医疗智慧化:患者就诊体验升级
AI医师助手

AI医生助理助力医疗智慧化:患者就诊体验升级

近日,我国浙江大学医学院附属邵逸夫医院推出了一款AI医生助理,患者可以通过扫码小程序完成预诊病情录入,并在5秒内自动生成规范化的电子病历。这款AI问诊系统一经推出引发了广泛关注,其优势在于能快速处理大量患者信息,将患者诊疗信息通过语音识别的方式快速录入,且不受时间和地点限制。未来,该系统可能应用于更广泛的医疗场景,如慢性病管理等。但同时也面临着挑战和不确定因素,例如患者健康信息泄露的问题。
AI医生进社区,居家养老享便利
AI医师助手

AI医生进社区,居家养老享便利

福州高新区居家养老团队引入AI医生,为老年人提供便捷的AI体检和远程会诊服务,让 Action 老人不出村就能看诊。AI医生将首先服务行动不便的特殊群体,未来还将与福州高新区总医院(筹)合作,进一步促进医疗卫生资源的均衡布局。
没有身体,会是ChatGPT最大的障碍吗? | 追问顶刊
AI医师助手

没有身体,会是ChatGPT最大的障碍吗? | 追问顶刊

在人工智能(AI)发展初期,Hubert Dreyfus在其著名的1972年作品What Computers Can’t Do[1]中论述*,由于计算机与人类有诸多的不同,它们永远无法具备智能。近来,Jaron Lanier在《纽约客》杂志上撰文,强调计算机不过是工具而已。正如他所作文章标题所言,“没有所谓的人工智能”[2]。这些AI批评家的观点犀利,但倒并不是在反技术。实际上,Dreyfus的著作激发了人工智能领域许多创新,而Lanier则是虚拟现实的提出者,也是一位长期创新者。然而,尽管Dreyfus和Lanier们洞若观火,但他们却混淆了两个重要的问题。 *注:中译本为《计算机不能做什么——人工智能的极限》。作者批判了基于符号处理的人工智能研究,强调人类智能不仅仅会处理对符号、规则或是事实,它还根植在人类的身体经验和其所处的特定环境中。他的观点在当时引发了巨大争议。随着神经网络和机器学习的发展,对他的批评才逐渐被重新审视和讨论。 一个是技术问题:计算机是否能够具备智能; 另一个则是科学问题:人类及其他动物是如何表现出智能的。 要解答这两个问题,首先要对“智能”这个概念达成共识。本文将遵循常规用法,并避免仅将“智能”定义为成年人所特有的能力,而是将其视为解决复杂且认知上具有挑战性的问题的能力。按照这种理解方式,关于计算机是否能具备智能的问题似乎已有答案。虽然Dreyfus和Lanier可能不愿意承认,但多年来的研究已明确显示,答案是肯定的。 ChatGPT及其他大语言模型近期的跃迁,是数十年技术创新的成果。LLMs能够就几乎任何主题生成清晰、令人信服的文章;它们能在科研中起作用;也能生成可编译并运行的计算机代码;而最近,ChatGPT甚至被病人评价为在医疗准确性上与人类医生相当,甚至更具同情心[3]。 当然,ChatGPT并非完美无瑕。例如,尽管其创造者做出了大胆尝试,但我们依然可以轻易发现,来源于互联网的大语言模型训练集中潜藏着种族偏见和性别歧视[4]。此外,ChatGPT还常常做出其创造者所说的“幻觉”,即凭空编造事实。 幻觉是否意味着大语言模型缺乏智能?也许并不是这样。由于大语言模型通过产生统计上可能的词序来回应查询,它们甚至没有尝试对世界做出真实陈述。大语言模型旨在解决那些复杂且在认知上具有挑战性的问题,即如何生成清晰的句子来回应查询,在这项任务中它们表现出色。可以将大语言模型比作竞选公职的政客:两者对任何问题都有现成的答案;两者也都倾向于凭空编造事实。当然,政客具有智能,大语言模型也是——即使两者都需要经过事实的核查。 然而,尽管当前的大语言模型展现出一定程度的智能,但它们与人类的智能并不相同。例如,根据语料库研究,美国儿童到两岁时听到的英语单词数量在1000万到3000万之间(不幸的是,这个数字与社会经济地位存在悲剧性的相关[5])。相比之下,人类儿童的语言学习方式与大型语言模型的训练过程迥然不同。以ChatGPT-3.5为例,该模型在大约570GB的文本数据上训练,涵盖约1150亿个参数。换句话说,ChatGPT需要的训练集是典型儿童所听到单词数量的5000多倍,这一点在比较它们的学习方式时尤为明显。 要回答人类(和其他动物)如何能够表现出智能这一科学问题,首先需要认识到我们与大语言模型有何不同。虽然人类能够熟练地使用文本信息并从中迅速学习(就像大语言模型一样),但与文本的互动仅仅是我们理解周围世界的众多方式之一。阅读和写作作为进化较新、发展上较先进的技能,并非是每个人都能轻易掌握的。在人类大部分历史中,我们——与其他动物一样——主要通过与外部世界和同类的具身互动来了解周遭环境;而直到今天,绝大多数人依然在依赖这种方式来认识世界。 根据当代认知科学中的具身观点[6],理解人类智能的关键在于承认我们的具身性。仅凭任何计算系统(包括大型语言模型)是无法完全解答科学问题的。从这个观点来看,我们不仅是逻辑思维的主体,更是不断与物质、社会、文化和技术环境互动的活生生的生物。 作为生物,我们有特定的新陈代谢需求,这与我们的身体性质紧密相关。为满足这些需求,我们拥有调校得恰到好处的运动和感知系统。以青蛙为例,它以捕食苍蝇为生,它们是捕捉这些食物的大师,正如现代人善于寻找杂货店和餐馆一样。 在生命体中,感知和移动方式紧密相连,感知世界旨在引导行动,并常常包含行动本身。人类和其他动物通过移动来体验周围世界,比如转动眼球、伸长脖子、走近物体以便更好地观察事物。这种活动不仅仅是观察的辅助,它实际上是观察的一部分。 换言之,从具身的角度看,人类的视觉不仅仅是眼睛或大脑某区域的功能,而是整个动态系统的协作。看见世界的主体当然包括大脑和眼睛,但这些眼睛总是在移动(多亏了肌肉),而且它还嵌入在一个移动的动物头部、颈部和躯干上。要解释人类智能,必须考虑这整个的具身系统。这种体验与行动之间的紧密联系是人类智能的核心特征,但这是大语言模型所欠缺的。大语言模型的智能不是具身的,因此,它们的智能与我们的不同。 另一个区别在于,虽然ChatGPT的运作和训练可能需要消耗大量(且未公开的)能量,但与生物不同,大语言模型并不像动物那样具有新陈代谢的需求。我们的代谢需求暗示着我们对世界中情境体验内在地带有积极或消极的评价[7]。生物因需求而存在,因此有些情境会比其他情境体验起来更理想。即便是单细胞生物也会对其环境中特定化学物质的不同浓度做出不同的反应,以努力维持在其生存所需的条件范围内。从根本上来说,人类的认知是一套我们用来维持生存的工具,这就是为什么我们会体验到某些情境是好的,而另一些则不是。我们人类受到温暖、饱腹和被爱的需求驱动,这种动机渗透我们的体验,甚至影响到看似最公允的认知过程。 人类的生活本质上是社会化的。我们在另一个人体内开始我们的生命,并以完全无助的状态出生。我们在与其他人类共存的世界中成长,特别是那些提供我们温暖、食物和爱的照顾者,他们是我们继续前行的支持。与大型语言模型相比,我们之所以能更快地学习语言,部分原因在于,对我们来说,词语的出现总是伴随着面部表情、语调、手势以及时间延续的人际互动背景。这些互动不仅是交流的媒介,还是语言学习的关键因素。此外,我们还生活在特定的文化和技术环境中,这些环境深刻塑造并促进我们的活动和思维方式。作为具身的生物,我们在复杂的人际情境中航行,调整自己的面部表情、语调和手势,以适应不断变化的环境和我们在其中的角色[8]。例如,我们作为演讲者进入讲堂的方式与作为听众时截然不同;我们在东京的行为模式也可能与在多伦多时有所不同。 人类智能的一个关键特征是我们的适应能力,特别是对新技术的适应能力。我们不仅能够采用新技术,还能通过它们改变我们的思考和生活方式。书写文字,作为一项“古老”技术,就是这种适应能力的早期体现。到了2023年,智能手机和人工智能(包括大语言模型)无处不在,它们通过改变我们的环境和所需的认知技能,从而改变我们的认知模式[9]。这一转变,无论好坏,已成定局,无法逆转。 这些差异综合起来,指向了John Haugeland所说的“在乎”(giving a damn)的生活方式和智能方式*[10]。人类在乎,“在乎”不仅仅是对维持个体存在和与世界及他人关系的承诺,更包括对自我认知状态的深切关心——关心自己是处于“幻觉”,还是在述说真相。ChatGPT无法关心这些事情,因为它不是一个具身的有实体生物,不是一个活着并参与其生成文字所描述的世界的生物。当我询问ChatGPT这个问题时,它确认大语言模型并不在乎。当然,未来的人工智能模型(可能会融合大语言模型技术)或许会被构建成在乎这些事情的样子。 *注:出自John Haugeland的Giving a Damn: Essays in Dialogue with John Haugeland。其中“在乎”(giving a damn)指的是一种根植于个体身份和存在方式的深刻承诺和关注。这意味着个体的认知过程和智能表现不仅仅是冷冰冰的信息处理,而是与个体的情感、价值观和社会互动密切相关。 我们从如今的大语言模型中学到的是,智能的表现方式不止一种。我们的智能方式并非唯一,也不是大语言模型所采用的方式。这一认识并没有从技术成就上削弱大语言模型,但这清楚地表明,就回答关于人类及其他动物智能的科学问题而言,大语言模型并无太大帮助。认知科学家们仍有大量工作要做。开展这些工作需要我们仔细关注我们作为具身的存在——我们是活着的、能移动的、社会化的、有文化的生物,我们是会在乎的生物。 阅读原文: Chemero, A. LLMs differ from human...
谷歌正式推出“医疗ChatGPT”
AI医师助手

谷歌正式推出“医疗ChatGPT”

2022年底,OpenAI推出的基于大语言模型(Large language model,LLM)的聊天机器人ChatGPT展示了令人印象深刻的强大能力。 为应对异军突起的OpenAI,谷歌在今日推出了其生成式人工智能模型——Gemini,谷歌表示,这是迄今为止功能最强大、最通用的人工智能大模型,其在许多测试中击败了OpenAI最近的GPT-4。 除了与OpenAI的直接竞争外,谷歌还致力于开发其他更专业的生成式人工智能项目,其中就包括医疗人工智能大模型——MedLM。谷歌表示,该模型已经可以通过公司的Vertex AI平台向美国谷歌云客户提供,该平台使用机器学习工作流来指导用户通过训练、评估和部署生成式人工智能模型的过程。与此同时,美国以外的某些市场可以“预览”这些工具。 MedLM模型基于Med-PaLM 2,Med-PaLM 2是谷歌进军医疗人工智能大模型的第二次尝试。去年,其开发的Med-PaLM模型因通过了美国医疗执照考试(USMLE)而成为头条新闻(准确率为67%),而今年,Med-PaLM 2进一步将准确率大幅提升至86.5%,根据谷歌的说法,该分数相当于“专家”医生水平。 谷歌表示,MedLM模型有两个版本,其用途之间的差异在于,第一个MedLM模型更大,专为复杂任务设计。第二个是中等模型,能够进行微调,最适合跨任务扩展。谷歌表示,在未来几个月会将基于Gemini的模型集成到MedLM模型中,以进一步扩展其人工智能功能。 谷歌表示,此次新推出的医疗人工智能大模型——MedLM,旨在用于整个医疗保健行业的各个方面,包括医院、药物开发、面向患者的聊天机器人等。例如,美国医疗保健巨头HCA Healthcare正在将MedLM模型用于记录临床医生与患者之间的对话,并将其自动转译为医疗记录,从而提高记录的质量。AI药物发现平台BenchSci正在使用MedLM模型快速筛选大量临床数据并识别某些疾病和生物标志物之间的联系。 医学是一项人性化的事业,其中语言是临床医生、研究人员和患者之间的沟通互动的关键。近年来,人工智能的进步为其在医学领域的应用带来了新的希望。但AI模型主要是单任务系统,缺乏表达能力和交互能力,还可能会编造令人信服的医疗错误信息,或纳入偏见加剧健康不平等。因此,现有的AI模型所能做的和在现实世界的临床工作流程中对它们的期望之间存在着不一致,使其难以转化为真实世界的可靠性或价值。 2023年7月,谷歌和谷歌旗下人工智能公司DeepMind的研究人员在国际顶尖学术期刊 Nature 上发表了题为:Large language models encode clinical knowledge 的研究论文。 该论文展示了谷歌开发的一个专精医学领域的大语言模型——Med-PaLM,其能够很好的回答医学问题。 为评估大语言模型(LLM)编码临床医学知识的能力,研究团队探讨了它们回答医学问题的能力。这项任务非常具有挑战性,因为为医学问题提供高质量的答案需要理解医学背景,回忆适当的医学知识,并根据专家信息进行推理。 在这项研究中,提出了一个基准,称为MultiMedQA:它结合了6个涵盖专业医疗、研究和消费者查询的现有问题回答数据集以及HealthSearchQA——这是一个新的数据集,包含3173个在线搜索的医学问题。通过这一基准来评估大语言模型回答医学问题的真实性、在推理中使用专业知识、有用性、准确性、健康公平性和潜在危害。 表现令人鼓舞 研究团队随后评估了PaLM(5400亿参数的大语言模型)及其变体Flan-PaLM。他们发现,在一些数据集中Flan-PaLM达到了最先进水平的表现。在整合美国医师执照考试类问题的MedQA数据集中,Flan-PaLM超过此前最先进的大语言模型达17%,达到了67.6%的准确率,达到了通过考试的标准(60%)。不过,虽然FLAN-PaLM的多选题成绩优良,进一步评估显示,它在回答消费者的医疗问题方面存在差距。 为解决这一问题,研究团队使用一种称为设计指令微调(instruction prompt tuning)的方式进一步调试Flan-PaLM适应医学领域。设计指令微调是让通用大语音模型适用新的专业领域的一种有效方法。 结果产生的新模型Med-PaLM在试行评估中表现令人鼓舞。例如,Flan-PaLM被一组医师评分与科学共识一致程度仅61.9%的长回答,Med-PaLM的回答评分为92.6%,相当于医师做出的回答(92.9%)。同样地,Flan-PaLM有29.7%的回答被评为可能导致有害结果,Med-PaLM仅5.9%,相当于医师所作回答(6.5%)。 升级版——Med-PaLM 2 值得一提的是,这篇在 Nature 论文中描述的 Med-PaLM 模型于2022年12月推出,而在今年5月份,谷歌在预印本平台发表论文,推出了升级版的Med-PaLM 2。 论文中显示,Med-PaLM 2是第一个在美国医疗执照考试(USMLE)类问题上达到专家级表现的大语言模型,能够正确回答多项选择题和开放式问题,并对答案进行推理,准确率高达86.5%,大幅超越了Med-PaLM以及GPT3.5。 Med-PaLM 2根据14项标准进行了测试,包括科学事实、准确性、医学共识、推理、偏见和危害,由来自不同背景和国家的临床医生和非临床医生进行评估。研究团队还发现该模型在回答医学问题方面仍存在一些差距,但并未具体说明,谷歌表示,进一步开发和改进该模型以解决这些差距,并了解大语言模型如何改善医疗保健。 已开展临床测试 据报道,Med-PaLM...
公司线上诊疗系统不会采用ChatGPT技术
AI医师助手

公司线上诊疗系统不会采用ChatGPT技术

这篇文章回答了投资者关于公司线上诊疗和问诊系统是否采用ChatGPT技术的问题,强调目前并未采用。同时,文章还包含了免责声明,指出本信息来自公开渠道,不构成投资建议,并提醒读者数据仅供参考。