重磅!AI可像人类一样感知决策,快速权衡各种选择,有望助力医疗诊断、自动驾驶等领
撰文 | 田小婷 前言 想象一下,在紧张刺激的赛车游戏中,人类需要迅速而精准地判断何时踩下油门、何时巧妙地转弯。在根据路况不断改变行驶路径的过程中,人类大脑可以展现出敏捷的决策能力和反应速度。 然而,在人类应对自如的赛车游戏中,传统的神经网络模型只能做出确定性的决策,尚不具备人类的感知行为能力。模拟人类大脑的决策过程,始终是人工智能(AI)领域的一大挑战。 如今,一种新型神经网络模型,有望让 AI 系统像人类赛车手一样,权衡各种选择,做出迅速、精准的决策。 近日,来自佐治亚理工学院的研究团队便提出了一种神经网络模型 RTNet,这一模型不仅能够生成随机决策,还能达到类似人类决策的响应时间分布。 研究团队通过全面的测试发现,RTNet 能够再现人类在准确性、响应时间和置信度上的所有特征,而且表现优于多个当前先进的神经网络模型。 相关研究论文以“The neural network RTNet exhibits the signatures of human perceptual decision-making”为题,发表在科学期刊 Nature Human Behaviour 上。 研究团队表示,即使是功能强大的大语言模型(LLM)也会因为幻觉编造一些不切实际的回答,因此开发一种更接近真实人脑的神经网络可能会使 AI 系统更加可靠。 像人类一样感知决策 近年来,卷积神经网络(CNN)在 AI 图像处理方面取得了很大进展,甚至在医学图像处理等领域超过了人类的水平,但在感知决策的认知模型中与人类的表现仍相较甚远。 传统的 CNN 面对相同的输入信号时,输出的结果总是确定的,而且在处理复杂度不同的图像时,花费的计算时间总是不变的。这也决定了 CNN 模型很难实现人类大脑的感知决策水平,无法根据任务的复杂程度调整反应时间和准确度。 此前,为了解决这些问题,一些研究团队曾尝试为神经网络引入随机性和动态性,开发能够生成动态响应时间的神经网络,但这些模型无法处理复杂的图像输入,结果也是确定性的,还是没有达到人类的感知决策能力。 Google Research 和科罗拉多大学的研究团队曾通过在深度神经网络的前馈网络中引入传播延迟来构建级联网络,产生了图像可计算的动态网络,其通过决策计算资源随时间增加的机制生成响应时间,从而允许响应通过每个处理步骤进行不断地演变。虽然模型可以模拟人类感知决策的速度和准确度,但输出结果还是确定性的,距离人类的感知决策水平还有相当大的距离。 在这项研究中,Farshad Rafiei...