AI医师助手
点击上方蓝字“返朴”进入主页,可关注查阅往期文章 信息时代,过去孤立的、资料匮乏的非智能医疗正在向数字驱动的、人工智能辅助的智能医疗方式逐渐转变,检查数据更多更精确了,医生的决策更准确了,看病的效率更高了。不过,这样就行了吗?患者因此就满意了吗?医生因此就幸福了吗? 美国著名心脏病学家、智能医疗发展领航人埃里克·托普(Eric Topol)博士在《深度医疗》(Deep Medicine)这本书里回答了这个问题。在他看来,技术应当支持更为人性化的医学,培养良好的深度医患关系。毕竟,医学的对象是“人”,而不是病。今天的展卷专栏摘选了托普关于“深度共情”的思考和展望,以飨读者。本文摘自《深度医疗》第十三章(河南科学技术出版社2020年11月第一版) 撰文 |Eric Topol 翻译 |郑杰、朱烨琳、曾莉娟 学习与患者交流或许能让医生重新爱上自己的工作。让患者走进医生的内心,什么都不会损失,反而能收获更多。——阿纳托尔·布鲁瓦亚尔 1975年秋天,我与其他90多位同学一起踏入医学院。当时,我们大多数人都刚刚大学毕业,是一群理想主义者。当时极其热门的医学类电视剧《韦尔比医生》(Marcus Welby, M.D.),讲述了一位对患者态度极好的家庭医生的故事;《基戴尔医生》(Dr. Kildare)也在电视上频繁重播。当时的医疗行业很单纯,医生能与患者建立真诚的关系,繁杂的影像扫描(拍X线片除外)或实验室化验等医疗操作很少,查房记录都是手写的。为新患者预约的门诊的会诊时间至少有一小时,复诊时间也有30分钟。那时,零售诊所根本不存在,也没有用来评估医生表现的相对价值单位,每位医生也不做月度工作报告,医院或诊所几乎没有管理人员。电子健康档案自然也不存在,医护人员也就不需要花费太多时间在计算机上,医疗机构中甚至都没有打字机。当时,“卫生系统”一词还未问世,全美医疗健康领域的工作岗位只有不到400万个。每位患者每年花费的医疗费用低于800美元,不到全美GDP的8%。 40多年后的今天,一切都截然不同了。如今,医疗行业已成为全美规模最大的行业,拥有超过1600万个工作岗位,也是美国大多数城市的主要就业来源,许多“非营利性”医疗系统的收入每年高达百亿美元。目前,我们在医疗健康上的人均支出已超过11000美元,每年总体超过3.5万亿美元,接近全美GDP的19%。部分药物和治疗的单次花费超过100万美元,绝大多数治疗癌症的新药一个疗程的起价超过10万美元,许多特效药每月大约需要花费2000美元。即便考虑通货膨胀、人口增长和老龄化等因素,调整这些数值,我们也很快就发现,增长趋势好比一列失控的火车。美国的卫生系统现在拥有雄厚的投资资产,如超过400亿美元的凯泽健康(Kaiser Health)、超过170亿美元的阿森松健康(Ascension Health),以及超过90亿美元的克利夫兰诊所等。 随着医疗健康行业经济的爆炸式增长,医疗服务也在逐渐失去人文关怀。令人感到震惊的是,早在90多年前,弗朗西斯·皮博迪就已经预言到这种情况:“医院……容易退化成没有人性的机器。”人们不再关心个性化医疗,商业利益取代了医疗健康,通过压榨临床医生来获得最大生产力和利润。医生花在患者身上的时间越来越少,即便花了时间,也缺乏与患者之间的沟通和联系,效果也不尽如人意。长期以来,医疗行业一直深陷在低效、错误、浪费和次优结果的泥潭中。尤其是近几十年来,医疗行业在照护患者方面真正迷失了方向。在美国,新患者预约的平均会诊时间仅12分钟,复诊仅7分钟。“韦尔比医生”的时代早已一去不复返。 虽说人工智能会给医学带来翻天覆地的改变,但并不一定意味着一切将变得更好。如今,技术应用可能越来越细分且专业化,带来的许多好处仍处于初级阶段,但这些技术最终将影响医学领域的每个人,不仅是放射科医生、病理科医生、皮肤科医生等“有模式”的医生,还包括其他各类医生、护士、医生助理、药剂师、理疗师、临终关怀服务者和其他护理人员等,在未来人工智能将承担他们的工作。此外,整个医院、诊所的生产力和效率都将得到显著提高。所有这些需要很多年才能实现,但最终会成为医学史上最大的变革。摆在我们面前的超级简化的工作流程,将会以各种不同的方式影响医疗健康的方方面面。而这可能会带来两种截然不同的结果:让情况变得更好,或变得更糟。而现在,我们必须跳出这个框架向前走,以确保我们正朝着正确的方向发展。 为医生和患者赢取宝贵的时间 人工智能给医学领域带来的最重要的成果之一,可能就是时间方面的改善了。目前在美国,超过一半的医生有职业倦怠,超过25%的年轻医生患有抑郁症,每年有三四百名医生自杀。职业倦怠会导致医疗失误,而医疗失误反过来也会加重倦怠。医生希望花更多时间与自己、家人、朋友,甚至是患者在一起,从而找到工作与生活的平衡。虽然这可能不是解决之道,但却是个开始。 对于患者而言,时间方面的改善给照护质量及健康结果带来了至关重要的影响。2018年,美国国家经济研究局发表了宾夕法尼亚大学埃琳娜·安德烈耶娃(Elena Andreyeva)和她同事共同撰写的一篇论文。该论文研究了关于家庭健康问诊时间对急性病患者治疗出院后的影响。她们分析了护士、理疗师和其他临床医生的6万多次会诊后发现:会诊时间每延长一分钟,患者再入院的概率会降低8%;兼职医疗服务者的服务每延长一分钟,患者再入院的概率会降低16%;护士每多花一分钟,患者再入院的概率会降低13%。在研究人员发现的所有可能影响再次住院风险的因素中,时间是最重要的。 1895年,被后人称为“现代医学之父”的威廉·奥斯勒(William Osler)写道:“用不到半小时的时间来审阅一份病例,是无法令人感到满意的。患者希望医生能多花时间在他们身上,10~12分钟的匆忙检查并不能使患者感到满意。”120多年后,一切都已成真。 芝加哥大学的内科医生戴维·梅尔策(David Meltzer)研究了同医生共处的时间与其他相关因素的关联性,比如照护的连续性,即会诊医生与住院检查时的医生是否为同一人。他的研究报告指出,花更多时间与患者在一起,能降低20%的住院率,节省数百万美元,而且有助于避免医院感染和其他医疗事故风险。这么做能带来如此巨大的收益,以至于凯泽医疗(Kaiser Permanente)和范德比尔特大学随后也复制了这一模式。 这些研究都表明,临床医生与患者的相处中,时间长短至关重要。延长会诊时间不仅能增进医患交流,建立信任,还能改善结果,降低后续成本。这如同一项前期投资,可以带来丰厚的回报。然而,现实却完全与提高医疗健康领域生产力的目标背道而驰,如今临床医生往往被迫在尽量少的时间内会诊尽量多的患者。要节省这些钱,就需要医生用时间来补偿。涉及34家诊所的168位临床医生的一项研究表明,工作节奏是工作满意度最重要的决定因素。 如今,人工智能可以帮助患者赢取宝贵的时间。2018年,美国公共政策研究所发布了一份有关人工智能技术影响的详尽报告:《为所有人提供更好的医疗和护理》(Better Health and Care for All)。该报告预测,人工智能将为不同的临床医生腾出平均超过25%的时间来照顾患者。技术带来的最重要的影响之一:让临床医生摆脱电子健康档案的束缚。在科罗拉多大学,医生开始将计算机带出诊室,在医生助理的陪同下为患者提供服务,医生的倦怠程度显著下降,从53%降低到13%。很多人认为,使用自然语言处理能达到与患者直接沟通同样的效果,然而单靠技术解决方案是行不通的,我们得认识到医学不是一条流水线。 虽然技术能带给医生更多时间,但仍然不够。如果要让医学真正地深入人心,就必须从根本上改变医生的思考方式及与患者互动的方式。 培养医生的共情能力,让就医更加人性化 当今的医学领域严重缺乏共情,其中只有一小部分原因与时间不足有关。 英国医生马修·卡斯尔(Matthew Castle)曾发表过一篇略带讽刺意味的文章,名为《工作过劳》(Burnout),他在文章中将自己的角色设定为一位生活在2100年的人工智能医生。他拥有足够的深度学习能力,能对每位患者进行完整的分子和神经精神病系统分析,熟悉所有生物医学文献,还能同步进行数千次会诊。有了这些数据和人工智能,很多人会认为一切都将是乌托邦式的,然而,他的公司却要求他提供人性化的品质服务。他筋疲力尽,要求休假6个月,理由是“公司要求培养共情能力”。卡斯尔写道:“不管人类或机器多么强大,一旦要求他们做一些不可能的事情,就会失败。” 随着机器变得越来越智能,人类需要沿着一条不同于机器的道路进化,以便变得更加人性化。在图13-1中,我试图描述这一点。随着时间的推移,人类的表现不太可能发生实质性的改变。而在各种细分任务上,机器将逐步超越人类。为了将人类带入一个新的高度,我们需要提高人文素养,而这始终是人类与机器的根本差异所在。值得注意的是,尽管人们一直在努力设计各种能提升共情能力的社交机器人或应用程序,但人类的共情能力并不是机器能够真正模拟的。一些试图探测愤怒、悲伤、疲劳和分心等人类情绪的人工智能应用正在研发中。由最先进的机器人公司研制的虚拟人已经被内置了共情能力,但参与研发的人工智能专家也承认其有所不足,因为还无法“使这样的机器充满人性”,日本人称之为“存在感”(sonzai-kan)。会共情只是人类的基本特征之一,我们还需要爱、笑、哭、梦想、害怕、悲伤、喜悦、相互信任、相互关心、受苦、探索、讲故事、启发、好奇、创造力、感恩、乐观、善良、表达情感、理解、慷慨和尊重等,并且还需要适应能力、创新力、直觉、常识、文化、抽象化和语境化的能力,以及灵魂等。 图13-1人类智能、机器及人类人文素养的变化曲线 人工智能专家布莱恩·克里斯汀(Brian Christian)在《最有人性的人》(The Most Human Human)一书中谈道:“要成为富有人性的人,就要成为一个具有生活痕迹、有特质、有观点的特定的人。人工智能表明,当我们试图将这些特定的人类品质赋予智能机器时,智能机器与人类之间的界线最容易模糊。”所以,我们不能允许这种情形发生。...