ChatGPT一周年|AI应用如何赚钱?大模型等待“瓦特时刻”澎湃新闻2023-12-05 09:05澎湃新闻2023-12-05 09:05
【编者按】2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出聊天机器人ChatGPT。它不仅催生了人工智能界的又一轮高光期,还并不常见地被誉为“蒸汽机时刻”、“iPhone时刻”甚至“钻木取火时刻”。 这一年来,被称为“生成式人工智能”的革命性技术激发了全球科技界“把所有软件和硬件重做一遍”的冲动,让具有先发优势的AI基础设施提供商价值暴涨,使得从医疗到航天的科学探索获得被加倍赋能的前景,传说中“奇点”的到来从未变得如此具有可能性。 正如历史上任何一次技术变革,ChatGPT也给我们带来了深深的焦虑。既有对AI威胁人类生存的科幻式恐惧,也有对砸掉我们饭碗、骗取我们钱财、操纵我们心灵的现实担忧。连OpenAI自身,也刚刚经历了一场危机,差点没躲过一夜坍塌的命运。 这一年让我们产生了更多疑问:大语言模型下一步的进化方向是什么?AI芯片短缺何时解决?训练数据快要耗尽了吗?中国的百模之战会如何演化?AI技术发展应加速还是减速?AGI(通用人工智能)是否会存在其他形式?为此,我们邀请了2023年在AI赛道奔跑的业内人士回答这些问题,并提出他们自己的问题。如果你也有自己的回答或提问,欢迎告诉澎湃科技(www.thepaper.cn)。 在生成式人工智能“喧闹”了一年后,到底有多少企业因为该技术的应用赚到了钱? “国内应用都在试图产生价值,但很少实现盈利,做数字人的‘小作坊’倒是真挣钱了。”北京开放传神科技有限公司(OpenCSG)创始人兼首席执行官陈冉告诉澎湃科技。信也科技副总裁、大数据及AI负责人陈磊认为,在国外企业中,与OpenAI深度合作的微软公司“营收应该有比较大的起色”。云知声智能科技股份有限公司董事长兼CTO梁家恩则表示,“AI图像生成公司Midjourney据称已经做到1亿美元的营收了”,但是“还看不到真正的AGI-Native(AGI原生)应用”。 “目前仍处于刚刚开始的阶段,如果计算成本投入和收益,现在盈利的行业还不多见。”上海市数据科学重点实验室主任、复旦大学教授肖仰华表示,大模型在很多行业都取得了显著效果,但取得效果并不代表能盈利,这涉及到很多因素,尤其是成本因素,大模型的炼制需要巨大的成本。 如果换一种问法:大模型最先落地或者落地最成功的产业有哪些?蚂蚁集团副总裁、金融大模型负责人王晓航认为:“有两类,一类是创造型产业,比如设计、文娱、游戏;另一类是高知识密集型行业,比如金融、医疗、法律。”但是,医疗、金融等强监管行业对可靠性要求极高,不只是“幻觉”,还有金融的合规性、每个行业的价值主张。如果这3个问题不解决,大模型在严谨产业里落地时潜力就无法发挥。 具体到医疗领域,科大讯飞董事长刘庆峰向澎湃科技介绍了“医疗大模型可以完成90%的不合理用药提醒”,英矽智能联合首席执行官兼首席科学官任峰则直言:“好像一夜之间,以前做不到的事情忽然就可以做到了。”比如,直接与大模型对话,提问“帮我找到治疗某个癌症的靶点”就可以得到相关结果。 在金融领域,王晓航表示,在很多场景里意图理解、定性分析、量化分析等领域已经超过人工,“未来的服务要通过多模态的交互、语言的交互来完成,怎么跟移动互联网的图形界面融合,形成一种新的界面和体验,可能是未来两年会发生的。” 对于未来一年是否会出现现象级的应用,受访者观点不一。百度集团副总裁、移动生态商业体系负责人王凤阳认为现象级的生成式AI应用一定会出现,而且会超出大家的预期。IDEA(粤港澳大湾区数字经济研究院)AI安全普惠系统研究中心讲席科学家王嘉平则表示,“会比原来互联网的现象级应用来得更快”。阿里云科技和研究中心主任安筱鹏持谨慎乐观的态度,并指出,对于中国应用场景丰富的说法,前提是特定行业的数据积累足够多。此外,需要底层算力、开源模型以及各种各样的工具才能把整个生态搭建好,把技术门槛、应用门槛及成本降下来。 “任何一次重大技术变革带来的产业革命拐点,一定来自成本的拐点。”安筱鹏说,蒸汽机最开始被发明出来,是为了把矿井里的水抽上来,它的成本很高,会经常坏。“瓦特做了什么?他大幅提高了蒸汽机的稳定性、安全性、可靠性,降低了成本,所以蒸汽机从一个专用的、只能抽水的机器,变成了一个通用的、可以拉着火车向前跑的机器。” 以下为采访实录,因篇幅原因有删减: 澎湃科技:目前因生成式AI的应用而实现盈利的企业或行业有哪些? 陈磊(信也科技副总裁、大数据及AI负责人):我们看到很多估值、用户体量或营收涨了很多的企业。微软因为生成式AI对Office体系的加持,营收应该有比较大的起色,市值又回到了万亿规模。未来应该会有企业因为生成式AI盈利。 张鹏:每个场景下都有。客服工作可以由AI来取代一部分,或者由AI提升质量。在科研场景中,AI帮助阅读文献、查找资料、数据分析,提升科研工作效率,甚至提供一些关键性的研究创意。 陈冉【北京开放传神科技有限公司(OpenCSG)创始人、CEO】:国内应用都在试图产生价值,但很少实现盈利,做数字人的“小作坊”倒是真挣钱了。国外的应用已经非常适配了,比如Copilot辅助开发代码,做陪伴的汤姆猫也比较成功。在未来,数据已经准备好的、马上可以用起来的、使用比较多的、给大家带来很多价值的应用会马上形成产业链。 梁家恩(云知声智能科技股份有限公司董事长兼CTO):AI图像生成公司Midjourney据称已经做到1亿美元的营收了。过去UGC(注:用户生成内容)只是文本为主,有了这种多模态工具,UGC会更加丰富多彩。所以这块的应用可能会比较快,因为它相当于给我们生成了很多候选,再由人协同处理。如果直接让机器百分之百生成一个非常好的结果,所有AIGC(注:人工智能生成内容)目前都做不到。 肖仰华(上海市数据科学重点实验室主任、复旦大学教授):是否盈利取决于成本和收益。大模型应用的成本问题目前已经非常突出,大模型的炼制需要巨大成本,大模型的应用也存在成本。考虑到成本因素之后,收益是否足够显著,相对于成本付出是否值得,这也是大模型行业赋能千行百业中的关键问题。 目前仍处于刚刚开始的阶段,如果计算成本投入和收益,现在盈利的行业还不多见。如果换个问法,大模型取得应用效果的行业和企业有哪些,那么我想答案非常明确,大模型在很多行业都取得了显著效果,比如大量的虚拟主播基于大模型,普通翻译员的大部分工作一定程度上可以被大模型所代替。还是仍然要强调,大模型能取得效果并不代表它能盈利,这涉及到很多因素,尤其是成本因素。大模型虽然能够达到普通人的一些能力和水平,但是成本未必更低,所以这完全是另外一个问题。 澎湃科技:大模型最先落地或者落地最成功的产业有哪些?有哪些难点? 王晓航(蚂蚁集团副总裁、金融大模型负责人):有两类,一类是创造型产业,比如设计、文娱、游戏;另一类是高知识密集型行业,比如金融、医疗、法律。大语言模型是强大的世界知识图谱容器,它能媲美、赋能,甚至某种程度上替代一部分知识型工作者。 大模型是基于全网可得的公开数据所训练的,理解和生成能力非常强,但遇到专业严谨的行业时有非常多挑战,通用大模型在专业通识方面是短板,比如金融专业性很深。各种金融决策的复杂性和严谨性要求很高,医疗行业更加复杂严谨,比如做家庭资产配置保障计划不是简单推荐,而是计算偏离度、风险集中度、风险等级、承受能力,像这样的决策不是大模型擅长的,它无法学习,即使有足够的数据,它的严谨梳理和计算也远远达不到今天的行业要求。 医疗、金融等强监管行业对可靠性要求极高,我讲的可靠性不只是“幻觉”,还有金融的合规性、每个行业的价值主张。如果这3个问题不解决,大模型在严谨产业里落地时潜力无法发挥。如何解决这3个问题?一是大模型要跟专业领域的小模型结合,比如资产配置,在理解用户需求后调动资产配置工具,而不需要重新计算资产该怎么配置。二是结构化的知识图谱很重要,比如我们为了做好医疗理赔工作,要建非常完备的医疗和保险知识图谱,在大模型训练过程中注入,降低幻觉,提高专业性,在应用过程中优先考虑知识图谱跟大模型怎么结合。检索增强技术也非常有效,在专业领域中进行内容定位以后进行解答,就像从一本专业书籍中找答案,这些技术都可以大幅提高大模型专业性和事实性。这是一个系统工程。 澎湃科技:什么样的大模型应用能够真正产生价值? 张鹏(北京智谱华章科技有限公司CEO):一个技术在应用中会产生几种价值,降本、增效、提质、创新。更具体一点来说,比如能做到人做不到的事,帮人做简单、重复的工作,把人从这种工作中解脱出来,在数字化时代提升数据流动、交换、处理的效率和效果。 陈冉:应用最终要解决痛点、服务人类,人类为产生价值的过程付费。现在的很多应用不会马上跳跃式形成下一代应用,中间阶段是让现在的应用AI化,最终变成原生应用,也就是说甚至不用到网页上点了,这些应用涉及购物、旅游、餐饮、服装等。 梁家恩:目前还看不到真正的AGI-Native(AGI原生)应用。就像当时移动互联网刚出来时,大家的想法是把PC应用改小了,装进手机就完了,目前大模型应用还停留在这个阶段,真正的AI-Native(AI原生)应用还需要迭代。 但不管最终形态如何,还是要回答一个问题:帮助用户解决了什么问题。比如在医院里,用户最希望的是有一个超级医生,所有问题都能解决,连医院都不需要去了。但在这种严肃场景里,要一步到位不太现实。我们现在可以给医生提供一些工具,帮助医生提升效率和质量,基础性的工作让机器完成,更好释放更多优质医疗资源。人跟机器的协同过程中,人在适应机器,机器也在学习人的过程中不断提升。最终它有可能达到专家的中上水平。但未来可能还会剩下一些疑难问题,需要人来协同解决。 医疗是我们的重要方向之一,这是一个知识非常密集的行业,光靠在互联网上抓取医疗相关的数据,精准度和质量达不到好的医疗专家水平。所以我们还会补充相关数据,针对性优化相关应用。最终还是以解决问题为导向,才能找到最终的AI-Native的形态。 澎湃科技:AI如何应用于智能医学、生命科学,如何考虑隐私和伦理因素? 刘庆峰(科大讯飞董事长):居民用药中非处方药占45%(2022年我国非处方药市场规模为1951.7亿元,占零售药品市场的45.4%),但在基层6亿多的复诊案例中,出现4000多万例疑似不合理用药。很多人有基础疾病,容易出现用药不当的问题。我们身边就有一位85岁老人,患有阿尔兹海默病,服用相关药后牙疼,吃了一个常见的消炎药后就开始不吃饭,连续将近20天,此后在省立医院就诊后才慢慢恢复。后来发现原因在于不知道这款消炎药与原来用药相互之间有反应,除此之外还有些用药禁忌,老百姓不知道,药房里的销售人员也不知道,也不可能每一个病都去问医生。那么,这个需求如何满足? 我认为我们的医疗大模型可以完成90%的不合理用药提醒。同样的,很多人拿到体检报告后看不懂有没有深层次问题,但又不是每个人都能有机会咨询医生。科大讯飞在内部尝试了几千个抽样例子,可以看到有40%的样本应该给予更多提醒,有的要马上就医,或者要注意各种各样的禁忌,还有百分之三点多则提醒要马上处理。 不过,最好的医生也不可能百分百都对,模型就算比医生更专业,也不可能百分百正确。所以我们希望社会对这样的业务,一方面要严格、谨慎,依法,绝不能随便推荐处方药,也绝不能随便下定论,一旦发现有问题一定要提醒“就医要到医院”。模型的任务是让患者心中更清楚,不是替代医生,而是帮助患者将来更好地了解情况,以便更好地和医生沟通。 任峰(英矽智能联合首席执行官兼首席科学官):ChatGPT出现之后,我们用内部数据基于其进行了二次训练,使模型能够支持生物医药的专业精准的信息问答。之前传统方式是每个靶点的生物学机制都需查阅大量文献,现在可以直接与大模型对话,比如提问“帮我找到治疗某个癌症的靶点”就可以得到相关结果。这对我来说印象深刻,好像一夜之间,以前做不到的事情忽然就可以做到了。 我们目前已经在用由AI辅助决策的自动化实验室,把人工智能与自动化、机器人和生物学能力融合,既可执行单一任务,如高通量筛选、高内涵成像、二代测序等,也可以实现一体化串联流程,比如在14天内完成靶点发现和验证的全自动化干湿实验闭环。效果如何呢?以药物研发的DMTA(Design、Make、Test、Analyze)为例,以前每一轮合成大约需要一名化学家3到6周的时间来制造、纯化、量化和鉴定所需化合物,再进行一系列生物分析。而自动化实验室可以24小时处理,反应可以在任何时间进行,还有可能将合成时间从3到6周缩短到3到10天。除了研发的角度以外,对于医院、医生以及患者,AI的赋能都是全方位的,比如辅助诊断、以智能的方式追踪患者情况变化等。 陈冉:我们看到多模态分子大模型、影像大模型都在做,需要人类高智商的领域和行业就是大模型的发展方向,医院里的主任就是稀缺资源。 梁家恩:我们最早做的是病历的书写和审核,我们会帮医生检查诊疗有没有存在风险隐患的地方、哪些不符合医保规范。我们要守住的底线是保护用户隐私,我们和客户相关的数据都是脱敏数据。 澎湃科技:AI会引发哪些具体的教育变革?可以参考你们的实践。 肖仰华:未来随着通用人工智能技术的快速发展,其对教育的影响会非常深远。未来教什么学什么,怎么教怎么学都会成为问题。 人工智能的每一次进步似乎都以AI通过了人类的某种考试为标志,像高考、注册医师考试、注册司法执照考试等。那么AI的进步往往反射出人类教育的很多问题,比如既然AI通过了如此众多的人类考试,我们考试的意义何在?先进的人工智能似乎一直在把机器培养成人,而落后的教育似乎是把人培养成机器,很多优秀的学生被培养成了刷题的机器,这是教育应该极力避免的问题,所以AI的发展映射出的教育问题值得我们注意。 第二个问题是怎么教怎么学。未来知识的获取、技能的学习意义将会降低,现代文明一直是以知识发现和获取为主要目的,我们曾经以“饱读诗书,学富五车”为荣耀,这样一种追求在大模型时代,将会变得不再那么耀眼。因为最学富五车的是大模型,他几乎学到了人类的所有知识,那么对于知识的廉价和贬值,取而代之的是人类生存和发展的智慧将会更加凸显。 张鹏:有一次我跟“好未来”的技术人员交流。AI学习能力比人类强,比人类快,未来我们的孩子还需要学习这些基础知识吗?未来的孩子们要学习啥?我当时用开玩笑的语气说,学习AI。在这样一个时代,大家要掌握AI的原理或基本知识。第二,基础知识的学习还是要有,当然可以考虑怎么用辅助手段来提升学习效率。 AI的进化在倒逼人类自身的进化。如果人类不想被AI取代、被AI奴役,人类本身的智能水平以及学习能力需要调整和进化。 陈冉:学校资源是有限的,通过AI把好老师的资源沉淀下来,变成各科老师陪伴在身边,教育肯定会形成质变。 刘聪(科大讯飞研究院院长):教育领域属于讯飞非常重要、也有深厚积累的场景,因此我们在2022年12月开启大模型攻关确立“1+N”体系之时,就明确了教育属于“N”的重要落地领域之一。面向家长和学生,讯飞星火认知大模型赋能的讯飞AI学习机实现了中英文作文类人批改,在口语对话方面进行陪伴式对话练习,还能对孩子的发音进行评分。星火语伴App可以让学生和虚拟人老师面对面沟通。面向老师,星火教师助手可以创新规划单元教学设计、启发创设情境教学活动、一键生成互动教学课件,提升老师的备课效率。...